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Abstract. If Γ1, . . . ,Γn are limit groups and S ⊂ Γ1 × · · · × Γn

is of type FPn(Q) then S contains a subgroup of finite index that
is itself a direct product of at most n limit groups. This answers a
question of Sela.

1. Introduction

The systematic study of the higher finiteness properties of groups was
initiated forty years ago by Wall [28] and Serre [25]. In 1963, Stallings
[27] constructed the first example of a finitely presented group Γ with
H3(Γ; Q) infinite dimensional; his example was a subgroup of a direct
product of three free groups. This was the first indication of the great
diversity to be found amongst the finitely presented subgroups of direct
products of free groups, a theme developed in [4].

In contrast, Baumslag and Roseblade [3], proved that in a direct
product of two free groups the only finitely presented subgroups are
the obvious ones: such a subgroup is either free or has a subgroup of
finite index that is a direct product of free groups. In [11] the present
authors explained this contrast by proving that the exotic behaviour
among the finitely presented subgroups of direct products of free groups
is accounted for entirely by the failure of higher homological-finiteness
conditions. In particular, we proved that the only subgroups S of type
FPn in a direct product of n free groups are the obvious ones: if S
intersects each of the direct factors non-trivially, it virtually splits as
the direct product of these intersections. We also proved that this
splitting phenomenon persists when one replaces free groups by the
fundamental groups of compact surfaces [11]; in the light of the work
of Delzant and Gromov [15], this has significant implications for the
structure of Kähler groups.
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Examples show that the splitting phenomenon for FP∞ subgroups
does not extend to products of more general 2-dimensional hyperbolic
groups or higher-dimensional Kleinian groups [7]. But recent work at
the confluence of logic, group theory and topology has brought to the
fore a class of groups that is more profoundly tied to surface and free
groups than either of the above classes, namely limit groups.

Limit groups arise naturally from several points of view. Most ge-
ometrically, such a group is a finitely generated group whose Cayley
graph can be obtained as the pointed Gromov-Hausdorff limit of a se-
quence of Cayley graphs of a fixed free group (with a varying choice
of generating set of fixed finite cardinality). They are precisely those
finitely generated groups L that are fully residually free: for any finite
subset T ⊂ L there exists a homomorphism from L to a free group that
is injective on T . It is in this guise that limit groups were studied ex-
tensively by Kharlampovich and Myasnikov [16, 17, 18]. They are also
known as ∃-free groups [20], reflecting the fact that these are precisely
the finitely generated groups that have the same existential theory as
a free group.

The name limit group was introduced by Sela to emphasize the fact
that these are precisely the groups that arise when one takes limits of
stable sequences of homomorphisms. This is not the approach we take
here. Perhaps the simplest definition of a limit group is ω–residually
free groups: Γ is a limit group if for every finite set A ⊂ Γ, there is a
homomorphism to a free group whose restriction to A is injective.

In his account [24] of the outstanding problems concerning limit
groups, Sela asked whether the main theorem of [11] extends to limit
groups. The present article represents the culmination of a project to
prove this extension. Building on ideas and results from [11, 8, 9, 10, 12]
we prove:

Theorem A. If Γ1, . . . , Γn are limit groups and S ⊂ Γ1 × · · · × Γn is
a subgroup of type FPn(Q), then S is virtually a direct product of n or
fewer limit groups.

Combining this result with the fact that every finitely generated
residually free group can be embedded into a direct product of finitely
many limit groups ([17, Corollary 2], [21, Claim 7.5]), we obtain:

Corollary 1.1. Every residually free group of type FP∞ is virtually a
direct product of a finite number of limit groups.

B. Baumslag [2] proved that a finitely-generated, residually-free group
is fully residually free (i.e. a limit group) unless it contains a subgroup
isomorphic to F × Z, where F is a free group of rank 2. Corollary 1.1
together with the methods used to prove Theorem A yield the following
generalization of Baumslag’s result:
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Corollary 1.2. Let Γ be a residually-free group of type FPn where
n ≥ 1, let F be a free group of rank 2 and let F n denote the direct
product of n copies of F . Either Γ contains a subgroup isomorphic to
F n×Z or else Γ is virtually a direct product of n or fewer limit groups.

We also prove that if a subgroup of a direct product of n limit groups
fails to be of type FPn(Q), then one can detect this failure in the
homology of a subgroup of finite index.

Theorem B. Let Γ1, . . . , Γn be limit groups and let S ⊂ Γ1 × · · · × Γn

be a finitely generated subgroup with Li = Γi ∩ S non-abelian for i =
1, . . . , n.

If Li is finitely generated for 1 ≤ i ≤ r and not finitely generated for
i > r, then there is a subgroup of finite index S0 ⊂ S such that S0 =
S1×S2, where S1 is the direct product of the limit groups S0∩Γi, i ≤ r
and (if r < n) S2 = S0 ∩ (Γr+1 × · · · × Γn) has Hk(S2; Q) infinite
dimensional for some k ≤ n− r.

Note that Theorems A and B are the exact analogues of Theorems
A and B of [11]. After a sequence of reductions described in Section
3, both theorems follow from the following theorem, which is itself an
easy consequence of Theorem B.

Theorem C. Let Γ1, . . . , Γn be non–abelian limit groups and let S ⊂
Γ1 × · · · × Γn be a finitely generated subdirect product which intersects
each factor non-trivially. Then either :

(1) S has finite index and thus is virtually a product of n limit
groups;
or

(2) S has infinite index and for some finite index subgroup S0 < S
and some j ≤ n the homology group Hj(S0; Q) has infinite Q-
dimension.

In Section 9 we shall prove a more technical version of Theorem B
and account for abelian intersections.

For simplicity of exposition, the homology of a group G in this paper
will almost always be with coefficients in a Q G-module – typically
the trivial module Q. But with minor modifications, our arguments
also apply with other coefficient modules, giving corresponding results
under the finiteness conditions FPn(R) for other suitable rings R.

A notable aspect of the proof of the above theorems is that following
a raft of reductions based on geometric methods, the proof takes an
unexpected turn in the direction of nilpotent groups. The turn of events
that leads us in this direction is explained in Section 4 – it begins with
a simple observation about higher commutators from [12] and proceeds
via a spectral sequence argument.

Several of our results shed light on the nature of arbitrary finitely
presented subgroups of direct products of limit groups, and there is
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a real prospect of understanding all such groups. We shall return to
this point in a future article. Such an understanding certainly entails
a calculation of the Bieri-Neumann-Strebel invariants of such direct
products, a task which is complete in the case of free groups [19] but
not general limit groups. Beyond that there are many further chal-
lenges. In the case of surface groups one currently knows considerably
more than in the case of general limit groups — one knows, for in-
stance, that finitely presented subgroups have solvable conjugacy and
generalized word problems [12]. But even in that context much is un-
known. For example, do all finitely presented subdirect products satisfy
a polynomial isoperimetric inequality?

We are grateful to the many colleagues with whom we have had
useful discussions at various times about aspects of this work, par-
ticularly Emina Alibegović, Mladen Bestvina, Karl Gruenberg, Peter
Kropholler, Zlil Sela and Henry Wilton. In addition, we are grateful
to the anonymous referee for a number of observations which improved
our exposition.

2. Limit groups and their decomposition

Since this is the fourth in a series of papers on limit groups (fol-
lowing [8, 9, 10]), we shall only recall the minimal necessary amount
of information about them. The reader unfamiliar with this fascinat-
ing class of groups should consult the excellent introductions in [1, 6],
the original papers of Sela [21, 22, 23], or those of Kharlampovich and
Myasnikov [16, 17, 18] where the subject is approached from a per-
spective more in keeping with traditional combinatorial group theory;
a further perspective is developed in [14].

2.1. Limit groups. Our results rely on the fact that limit groups
are the finitely generated subgroups of ω-residually free tower (ω-rft)
groups [21, Definition 6.1]. A concise proof of this is given in [1, The-
orem 3.3]. Another proof, in somewhat different language, appears in
[17, Theorem 4].

An ω-rft group is the fundamental group of a tower space assembled
from graphs, tori and surfaces in a hierarchical manner. The number
of stages in the process of assembly is the height of the tower. Each
stage in the construction involves the attachment of an orientable sur-
face along its boundary, or the attachment of an n-torus T along an
embedded circle representing a primitive element of π1T . (There are
additional constraints in each case.)

The height of a limit group Γ is the minimal height of an ω-rft group
that has a subgroup isomorphic to Γ. Limit groups of height 0 are free
products of finitely many free abelian groups (each of finite rank) and
surface groups of Euler characteristic at most −2.
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The splitting described in the following proposition is obtained as
follows: embed Γ in an ω-rft group G, take the graph of groups de-
composition that the Seifert-van Kampen Theorem associates to the
addition of the final block in the tower, then apply Bass-Serre theory
to get an induced graph of groups decomposition of Γ.

Recall that a graph-of-groups decomposition is termed k-acylindrical
if in the action on the associated Bass-Serre tree, the stabilizer of each
geodesic edge-path of length greater than k is trivial; if the value of k
is unimportant, one says simply that the decomposition is acylindrical.

Proposition 2.1. If Γ is a freely-indecomposable limit group of height
h ≥ 1, then it is the fundamental group of a finite graph of groups
that has infinite cyclic edge groups and has a vertex group that is a
non-abelian limit group of height ≤ h− 1. This decomposition may be
chosen to be 2-acylindrical.

Note also that any non-abelian limit group of height 0 splits as A∗CB
with C infinite-cyclic or trivial, and this splitting is 1-acylindrical for
surface groups, and 0-acylindrical for free products.

2.2. The class of groups C. We define a class of finitely presented
groups C in a hierarchical manner; it is the union of the classes Cn

defined as follows.
At level 0 we have the class C0 consisting of free products A ∗ B of

non-trivial, finitely presented groups, where at least one of A and B has
cardinality at least 3 – in other words, all finitely presented nontrivial
free products, with the exception of Z2 ∗ Z2.

A group lies in Cn if and only if it is the fundamental group of a
finite, acylindrical graph of finitely presented groups, where all of the
edge groups are cyclic, and at least one of the vertex groups lies in
Cn−1.

The following is an immediate consequence of Proposition 2.1.

Corollary 2.2. All non-abelian limit groups lie in C.

2.3. Other salient properties. In the proof of Theorems A and B,
the only properties of limit groups Γ that will be needed are the fol-
lowing.

(1) Limit groups are finitely presented, coherent and their finitely
generated subgroups are limit groups.

(2) If Γ is non-abelian, it lies in C (Corollary 2.2).
(3) Cyclic subgroups are closed in the profinite topology on Γ.

(This is true for all finitely generated subgroups [29].)
(4) If a subgroup S of Γ has finite dimensional H1(S; Q), then S is

finitely generated (and hence is a limit group) – see [8, Theorem
2]
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(5) Limit groups are of type FP∞ (in fact F∞). This follows, for
example, from the fact [1] that they act cocompactly on CAT(0)
cube complexes.

2.4. Subgroups of finite index. Throughout the proof of Theorems
A and B we shall repeatedly pass to subgroups of finite index Hi ⊂ Γi.
When we do so, we shall be assuming that the group S originally
embedded in Γ1 × · · · × Γn is replaced with the inverse image of the
subgroup Hi under the projection pi : S → Γi and each Γj (j 6= i)
is replaced by pjp

−1
i (Hi). This does not affect the intersections Lj =

S ∩ Γj. Throughout the paper, we consistently use the notational
convention that S is a subgroup of the direct product of limit groups
Γi (1 ≤ i ≤ n), and that Li denotes the intersection S ∩ Γi.

Recall [13, VIII.5.1] that the property FPn is inherited by finite-
index subgroups and persists in finite extensions. In practice, in the
proof of Theorem C we detect the failure of property FPn by consider-
ing the homology of subgroups of finite index: if Hk(S1; Q) is infinite
dimensional for some S1 < S of finite index, then neither S nor S1 is
of type FPk.

Some care is required here: the finite-dimensionality of homology
groups is a property which persists for finite extensions but is not, in
general, inherited by finite-index subgroups. In the context of the proof
of Theorem C, care has been taken to ensure that each passage to a
finite-index subgroup respects this logic.

3. Reductions of the main theorem

The following proposition reduces Theorem A to Theorem C.

Proposition 3.1. Theorem A is true if and only if it holds under the
following additional assumptions.

(1) n ≥ 2.
(2) Each projection pi : S → Γi is surjective.
(3) Each intersection Li = S ∩ Γi is nontrivial.
(4) Each Γi is a nonabelian limit group.
(5) Each Γi splits as an HNN-extension over a cyclic subgroup Ci

with stable letter ti ∈ Li.

Proof. (1) The case n = 0 of Theorem A is trivial.
In the case n = 1, S < Γ1 has type FP1(Q), so is finitely generated.

But a finitely generated subgroup of a limit group is again a limit group,
and there is nothing more to prove. (The case n = 2 was proved in [10]
but an independent proof is given below.)

(2) Since S has type FPn(Q) it is finitely generated, hence so is pi(S)
and we can replace each Γi by pi(S).
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(3) If, say, Ln is trivial, then the projection map qn : S → Γ1×· · ·×Γn−1

is injective, and S is isomorphic to a subgroup qn(S) of Γ1×· · ·×Γn−1.
After iterating this argument, we may assume that each Li is nontrivial.

(4) Suppose that one or more of the Γi is abelian. A group is an abelian
limit group if and only if it is free abelian of finite rank. Hence a direct
product of finitely many abelian limit groups is again an abelian limit
group. This reduces us to the case where precisely one of the Γi – say
Γn – is abelian.

Now, replacing Γn by a finite index subgroup if necessary, we may
assume that Ln ⊂ Γn is a direct factor of Γn: say Γn = Ln ⊕M . Since
M∩S is trivial, the projection Γ1×· · ·×Γn → Γ1×· · ·×Γn−1×Ln with
kernel M maps S isomorphically onto a subgroup T of Γ1×· · ·×Γn−1×
Ln. Since Ln ⊂ T , it follows that S ∼= T = U × Ln for some subgroup
U of Γ1 × · · · × Γn−1. But then U has type FPn(Q), since S does, and
if Theorem A holds in the case where all the Γi are nonabelian, then
U is virtually a direct product of n− 1 or fewer limit groups. But then
S ∼= U × Ln is virtually a direct product of n or fewer limit groups, so
Theorem A holds in full generality.

(5) The subgroup Li of Γi is normal by (2) and nontrivial by (3).
Hence it contains an element ti that acts hyperbolically on the tree of
the splitting described in Proposition 2.1 (see [9, Section 2]). Then by
[9, Theorem 3.1], ti is the stable letter in some HNN decomposition
(with cyclic edge-stabilizer) of a finite-index subgroup ∆i ⊂ Γi.

Replacing each Γi by the corresponding subgroup ∆i, and S by S ∩
(∆1 × · · · ×∆n), gives us the desired conclusion.

(The above argument extends to all groups in C under the additional
hypothesis that the edge groups in the splittings defining C are all closed
in the profinite topology.) �

4. The elements of the proof of Theorem C

As noted above, Theorem A follows immediately from Theorem C.
The proof of Theorem C extends from Section 5 to Section 8. In the
present section we give an overview of the contents of these sections
and indicate how they will be assembled to complete the proof.

In Section 5 we prove the following extension of the basic result that
nontrivial, finitely-generated normal subgroups of non-abelian limit
groups have finite index [8].

Theorem 4.1. Let Γ be a group in C, and 1 6= N < G < Γ with N
normal in Γ and G finitely generated. Then |Γ : G| < ∞.

Using this result, together with the HNN decompositions of the Γi

described in Proposition 3.1, we deduce (Section 6):

Theorem 4.2. Let Γ1, . . . , Γn be non-abelian limit groups. If S ⊂
Γ1 × · · · × Γn is a finitely generated subgroup with H2(S1; Q) finite
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dimensional for all finite-index subgroups S1 < S, and if S satisfies
conditions (1) to (5) of Proposition 3.1, then:

• the image of each projection S → Γi × Γj is of finite index in
Γi × Γj;

• the quotient groups Γi/Li are virtually nilpotent of class at most
n− 2.

We highlight the case n = 2. Recall that a subgroup of a direct
product is subdirect if every projection to a factor is surjective.

Corollary 4.3. If Γ1 and Γ2 are non-abelian limit groups, and S <
Γ1×Γ2 is a subdirect product intersecting each factor nontrivially, with
H2(S1; Q) finite dimensional for all finite-index subgroups S1 < S, then
S has finite index in Γ1 × Γ2.

An important special case of Theorem A, considered in Section 7,
arises where S is the kernel of an epimorphism Γ1 × · · · × Γn → Z.

Theorem 4.4. Let Γ1, . . . , Γn be nonabelian limit groups, and N the
kernel of an epimorphism Γ1×· · ·×Γn → Z. Then there is a subgroup
of finite index N0 ⊂ N such that at least one of the homology groups
Hk(N0; Q) (0 ≤ k ≤ n) has infinite Q-dimension.

We complete the proof of Theorem C in Section 8. We have seen
that each of the Γi/Li is virtually nilpotent. Setting Γ = Γ1 × · · · ×Γn

and noting that S contains the product L = L1×· · ·×Ln, we argue by
induction on the difference in Hirsch lengths d = h(Γ/L) − h(S/L) to
prove that Hk(S; Q) has infinite Q-dimension for some k ≤ n if d > 0.
The initial step of the induction is provided by Theorem 4.4, and the
inductive step is established using the LHS spectral sequence. Section
9 contains a proof of Theorem B.

5. Subgroups containing normal subgroups

In this section we prove Theorem 4.1. We assume that the reader is
familiar with Bass-Serre theory [26], which we shall use freely. All our
actions on trees are without inversions.

Lemma 5.1. Let ∆ be a group acting k-acylindrically, cocompactly and
minimally on a tree X. Let H be a finitely generated subgroup of ∆.
Suppose that M < H is a nontrivial subgroup which is normal in ∆.
Then the action of H on X is cocompact.

Proof. If X is a point there is nothing to prove, so we may assume
that X has at least one edge. By hypothesis, ∆ has no global fixed
point in its action on X. By [9, Corollary 2.2], the nontrivial normal
subgroup M < ∆ contains elements which act hyperbolically on X,
and the union of the axes of all such elements is the unique minimal
M -invariant subtree X0 of X. Since M is normal in ∆, the M -invariant
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subtree X0 is also invariant under the action of ∆. But X is minimal
as a ∆-tree, so X0 = X.

We have shown that M acts minimally on X. Since M < H, it
follows that H acts minimally on X, so the quotient graph of groups G
has no proper sub-(graph of groups) such that the inclusion induces an
isomorphism on π1. A standard argument in Bass-Serre theory shows
that since H is finitely generated, the topological graph underlying G
is compact, as claimed. �

Proposition 5.2. Let Γ ∈ C, and let C, G be subgroups of Γ with C
cyclic and G finitely generated. If |G\Γ/C| < ∞, then |Γ : G| < ∞.

Proof. Let Γ be a group in C. We argue by induction on the level
` = `(Γ) in the hierarchy C = ∪nCn where Γ first appears. By definition,
Γ has a nontrivial, k-acylindrical, cocompact action on a tree T , with
cyclic edge stabilizers. Without loss of generality we can suppose that
this action is minimal.

If ` = 0 there is a single orbit of edges, the edge stabilizers are trivial
and the vertex stabilizers are nontrivial. If ` > 0 the edge-stabilizers
are non-trivial and the stabilizer of some vertex w is in C`−1.

Let c be a generator for C. We treat the initial and inductive stages
of the argument simultaneously, but distinguish two cases according to
the action of c.

Case 1. Suppose that c fixes a vertex v of T .
Then, by our double-coset hypothesis, the Γ-orbit of v consists of only

finitely many G-orbits Gvi. Since the action of Γ on T is cocompact,
there is a constant m > 0 such that T is the m-neighbourhood of Γv,
and hence the quotient graph X = G\T is the m-neighbourhood of the
finitely many vertices Gvi. In other words, X has finite diameter.

Note also that π1X has finite rank, because it is a retract of G which
is finitely generated.

Finally, note that X = G\T has only finitely many valency 1 vertices.
For otherwise, we can deduce a contradiction as follows. Since G is
finitely generated, if there are infinitely many vertices of valency 1,
then the induced graph-of-groups decomposition of G is degenerate, in
the sense that there is a valency 1 vertex x̄ with Gx̄ = Gē, where ē is
the unique edge of G\T incident at x̄.

Now x̄ = Gx for some x, and ē = Ge for edge e incident at x in T .
The group Gx̄ is the stabilizer of x in G, and Gē is the stabilizer of e
in G. The fact that x̄ = Gx has valency 1 in G\T means that Gx̄ acts
transitively on the link Lk of x in T . Hence |Lk| = |Gx : Ge| = 1, so
x is a valency 1 vertex of T . But this contradicts the fact that T is
minimal as a Γ-tree.

We have shown that X = G\T has finite diameter, finite rank, and
only finitely many vertices of valency 1. It follows that X is a finite
graph.
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In the case where Γ has level ` = 0, the stabilizer Γe of any edge e
of T is trivial. The number of edges in X = G\T that are images of
edges γe ∈ Γe can therefore be counted as |G\Γ/Γe| = |G\Γ| = |Γ : G|.
Hence, in this case, |Γ : G| < ∞, as required.

In the case where ` > 0, there is a vertex w of T whose stabilizer
Γw in Γ is a group in C`−1. Let Γe denote the stabilizer of some edge e
incident at w. Then |(G ∩ Γw)\Γw/Γe| is bounded above by the finite
number of edges of X = G\T incident at Gw ∈ G\T that are images
of edges γe ∈ Γe. By inductive hypothesis, G ∩ Γw has finite index in
Γw. Similarly, for each γ ∈ Γ, G ∩ γΓwγ−1 has finite index in γΓwγ−1.
Consider the action of Γw by right multiplication on G\Γ: the orbits
are the double cosets G\Γ/Γw and hence are finite in number because
they index a subset of the vertices of X = G\T ; moreover the stabilizer
of Gγ is γ−1Gγ ∩ Γw, which we have just seen is finite. Thus G\Γ is
finite.

Case 2. Suppose that c acts hyperbolically on T , with axis A say.
Then the double coset hypothesis implies that the axes γ(A), for

γ ∈ Γ, belong to only finitely many G-orbits. On the other hand, the
convex hull of

⋃
γ∈Γ γ(A) is a Γ-invariant subtree of T , and hence by

minimality is the whole of T .
Let T0 be the minimal G-invariant subtree of T . If T0 = T then

X = G\T is finite since G is finitely generated, and so |G\Γ/Γe| < ∞
for any edge-stabilizer Γe in Γ. If ` = 0, then Γe is trivial, so |Γ :
G| < ∞. Otherwise, choose e incident at a vertex w whose stabilizer Γ
is in C`−1 and apply the inductive hypothesis as above to deduce that
|Γ : G| < ∞.

It remains to consider the case T0 6= T .
Now, for any subgraph Y of T , and any g ∈ G, we have

d(g(Y ), T0) = d(g(Y ), g(T0)) = d(Y, T0).

Since the Γ-orbit of A contains only finitely many G-orbits, there is a
global upper bound K, say, on d(γ(A), T0) as γ varies over Γ.

Since T 6= T0 and T is spanned by the Γ-orbit of A, there is a
translate γ(A) of A that is not contained in T0. Recall that the action is
k–acylindrical. Choose a vertex u on γ(A) with d(u, T0) > K+k+2 and
let Γu denote its stabiliser in Γ. Let p be the vertex a distance K from
T0 on the unique shortest path from T0 to u. Since d(γ(A), T0) ≤ K,
the geodesic [p, u] is contained in γ(A). Similarly, [p, u] is contained in
any translate of A that passes through u. In particular, if δ ∈ Γu then
[p, u] ⊂ δγ(A), and since δ fixes u we have δ(p) = p or δ(p′) = p, where
p′ is the unique point of γ(A) other than p with d(u, p) = d(u, p′).

If δ fixes the edge of [p, u] incident at u, then δ(p) = p hence δ fixes
[p, u] pointwise, which contradicts the k-acylindricality of the action
unless δ = 1. Thus the stabiliser of this edge is trivial, which is a
contradiction unless ` = 0.
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If ` = 0 then, replacing u by an adjacent vertex if necessary, we may
assume that |Γu| > 2. Choose distinct non-trivial elements δ1, δ2 ∈ Γu.
It cannot be that all three of δ1, δ2, δ1δ

−1
2 send p′ to p. Thus one of

them fixes p, hence [p, u], which again contradicts the k-acylindricality
of the action.

�

We are now able to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Suppose that Γ ∈ C, G < Γ is finitely generated,
and N is a nontrivial normal subgroup of Γ that is contained in G. Then
by definition of C, Γ acts nontrivially, cocompactly and k-acylindrically
on a tree T with cyclic edge stabilizers. Without loss of generality the
action is minimal, so we may apply Lemma 5.1 to see that the action
of G is cocompact. The stabilizer Γe in Γ of an edge e is cyclic, and
the finite number of edges in G\T is an upper bound on |G\Γ/Γe|. It
follows from Proposition 5.2 that |Γ : G| < ∞, as claimed. �

6. Nilpotent quotients

In this section we prove Theorem 4.2, which steers us away from the
study of groups acting on trees and into the realm of nilpotent groups.

We first prove a general Lemma (from [12]) about a subdirect product
S of n arbitrary (not necessarily limit) groups Γ1, . . . , Γn. As before,
we write Li for the normal subgroup S∩Γi of Γi. We also introduce the
following notation. We write Ki for the kernel of the i-th projection
map pi : S → Γi, and Nij for the image of Ki under the j-th projection
pj : S → Γj. Thus Nij is a normal subgroup of Γj.

We shall denote by [x1, x2, . . . , , xn] the left-normed n-fold commu-
tator [[..[x1, x2], x3], . . . ], xn].

Lemma 6.1. [N1j, N2j, . . . , Nj−1,j, Nj+1,j, . . . , Nnj] ⊂ Lj.

Proof. Suppose that νij ∈ Nij for a fixed j and for all i 6= j. Then
there exist σi ∈ S with pi(σi) = 1 and pj(σi) = νij. Let σ denote the
(n− 1)-fold commutator [σ1, . . . , σj−1, σj+1, . . . , σn] ∈ S. Then pj(σ) is
the (n− 1)-fold commutator

[ν1,j, . . . , νj−1,j, νj+1,j, . . . , νn,j] ∈ Γj.

On the other hand, for i 6= j, we have pi(σ) = 1 since pi(σi) = 1.
Hence σ ∈ Lj, and pj(σ) = σ ∈ Lj.

Since the choice of νij ∈ Nij was arbitrary, we have

[N1j, N2j, . . . , Nj−1,j, Nj+1,j, . . . , Nnj] ⊂ Lj

as claimed. �

We now consider a finitely generated subdirect product S of non-
abelian limit groups Γ1, . . . , Γn such that H2(S1; Q) is finite dimensional
for every finite-index subgroup S1 < S.
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Let Li, Ci and ti be as in Proposition 3.1. We consider the image
Aij := pj(p

−1
i (Ci)) under the projection pj of the preimage under pi of

the cyclic group Ci. Clearly Nij < Aij < Γj.
In the remainder of this section we shall prove that Nij ⊂ Γj is

of finite index for all i and j. Lemma 6.1 then implies that Γi/Li is
virtually nilpotent of class at most n−2, as is claimed in Theorem 4.2.

As a first step towards showing that Nij ⊂ Γj is of finite index, we
prove the following lemma.

Lemma 6.2. Let Γ1, . . . , Γn be non-abelian limit groups. If S < Γ1 ×
· · · × Γn is a finitely generated subgroup with H2(S; Q) finite dimen-
sional, and if S satisfies conditions (1) to (5) of Proposition 3.1, then
for all i, j:

(1) |Γj : Aij| < ∞;
(2) Aij/Nij is cyclic.

Proof. (1) It suffices to consider the case i = 1. The HNN decomposi-
tion Γ1 = B1∗C1 described in Proposition 3.1 (5) pulls back to an HNN
decomposition of S with stable letter t̂1 = (t1, 1, . . . , 1), base group

B̂1 = p1
−1(B1), and amalgamating subgroup Ĉ1 = p1

−1(C1). As C1 is

cyclic, Ĉ1 = K1 o 〈ĉ1〉 where ĉ1 is a choice of a lift of a generator of
C1. Consider the Mayer-Vietoris sequence for the HNN decomposition
of S.

· · · → H2(S; Q) → H1(Ĉ1; Q)
φ→ H1(B̂1; Q) → H1(S; Q) → · · ·

The map φ is the difference between the map induced by inclusion
and the map induced by the inclusion twisted by the action of t̂1 by
conjugation. Notice that t̂1 commutes with K1 and so acts trivially on

H∗(K1; Q). Thus φ factors through the map H1(Ĉ1; Q) → H1(〈ĉ1〉; Q),
in particular the image of φ has dimension at most 1. Since H2(S; Q)

is finite dimensional by hypothesis, it follows that H1(Ĉ1; Q) is finite

dimensional. For each j, A1,j = pj(Ĉ1) is a homomorphic image of Ĉ1,
H1(A1,j; Q) is finite-dimensional. Since A1,j is a subgroup of the non-
abelian limit group Γj, it follows that it is finitely generated. Since it
contains the nontrivial normal subgroup Lj, Theorem 4.1 now implies
that A1j has finite index in Γj, as claimed.

(2) As pj is surjective, Aij/Nij = pj(Ĉi)/pj(Ki) is a homomorphic

image of Ĉi/Ki, so it is also cyclic, as claimed. �

The other crucial ingredient in the proof of Theorem 4.2 is the fol-
lowing proposition.

Proposition 6.3. Let G be an HNN extension of the form B∗C with
stable letter t, finitely generated base-group B and infinite-cyclic edge
group C. Suppose that G has normal subgroups L and N such that
t ∈ L, C ∩ N = {1} and G/N is infinite-cyclic. Suppose further that
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H1(N ; Q) is infinite dimensional. Let ∆ ⊂ G be the unique subgroup of
index 2 that contains B. Then, there exists an element x ∈ L∩B ∩N
such that Rx ⊂ H1(N ∩ ∆; Q) is a free R-module of rank 1, where
R = Q[∆/(N ∩∆)] and x is the homology class determined by x.

Proof. Let T be the Bass-Serre tree of the splitting G = B∗C and
consider the graph of groups decomposition of N2 := N ∩ ∆ with
underlying graph X = N2\T ; since N2C has finite index in G, this is
a finite graph. Each vertex group in this decomposition is a conjugate
of B ∩N2, and the edge groups are trivial since C ∩N2 = {1}.

Thus, as an abelian group, H1(N2; Q) is the direct sum of H1(X; Q)
and p copies of H1(B ∩N2; Q), where p is the index of BN2 in G. The
first of these summands is finite-dimensional, and hence H1(B∩N2; Q)
is infinite-dimensional (since H1(N ; Q) is infinite-dimensional, implying
that H1(N2; Q) is too).

Let τ be a generator of G/N . Then M := H1(B∩N2; Q) is a Q[τ±p!]-
module, which is finitely generated because B is finitely generated and
B/(B ∩ N2) is finitely presented. Since Q[τ±p!] is a principal ideal
domain, the module M has a free direct summand. We fix z ∈ B∩N2 so
that z ∈ M generates this free summand. It follows that Rz has infinite
Q-dimension, and so is a free submodule of the R-module H1(N2; Q).

Since t /∈ ∆, z1 := z and z2 := tzt−1 belong to distinct vertex groups
in X. Hence x := [z, t] = z1z

−1
2 ∈ L ∩N ∩∆ is such that x = z1 − z2

generates a free Q[τ±p!]-submodule of H1(N2; Q), and hence also a free
R-submodule. �

The following proposition completes the proof of Theorem 4.2.

Proposition 6.4. Let Γ1, . . . , Γn be non-abelian limit groups. If S <
Γ1 × · · · × Γn is a finitely generated subgroup with H2(S1; Q) finite
dimensional for each subgroup S1 of finite index in S, and if S satisfies
conditions (1) to (5) of Proposition 3.1, then (in the notation of Lemma
6.2) Nij ⊂ Γj is of finite index for all i and j.

Proof. It suffices to consider the case (i, j) = (2, 1). Let T be the
projection of S to Γ1 × Γ2, and define Mi = T ∩ Γi for i = 1, 2. Notice
that M1 = N21, the projection to Γ1 of the kernel of the projection
p2 : S → Γ2, and similarly M2 = N12.

Since S projects onto each of Γ1 and Γ2, the same is true of T . Hence
we have isomorphisms

Γ1

M1

∼=
T

M1 ×M2

∼=
Γ2

M2

.

We will assume that these groups are infinite, and obtain a contradic-
tion.

By Lemma 6.2, T/(M1 ×M2) is virtually cyclic, so we may choose a
finite index subgroup T0 < T containing M1 ×M2 such that T0/(M1 ×
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M2) is infinite cyclic. Hence Gi := pi(T0) is a finite-index subgroup
containing Mi for i = 1, 2, such that Gi/Mi is infinite cyclic. Choose
τ ∈ T0 such that τ.(M1 × M2) generates T0/(M1 × M2), and let τi =
pi(τ) ∈ Gi for i = 1, 2.

The HNN-decomposition of Γi from Proposition 3.1 (5) induces an
HNN decomposition Gi = B′

i∗C′
i
with stable letter t′i ∈ Li, where C ′

i =
Ci ∩Gi and t′i an appropriate power of the stable letter ti of Γi. Notice
that, by Lemma 6.2, C ′

i ∩Mi = {1}. For each i = 1, 2, Proposition 6.3
(with G = Gi, N = Mi, L = Li, t = t′i, B = B′

i, C = C ′
i) provides an

index 2 subgroup ∆i in Gi and an element xi ∈ Mi ∩∆i ∩Li such that
xi generates a free Q[τ±1

i ]-submodule of H1(Mi ∩∆i; Q).
Now define M ′

i := Mi ∩∆i. It follows that x1 ⊗ x2 generates a free
Q[τ±1

1 , τ±1
2 ]-submodule of

H1(M
′
1; Q)⊗Q H1(M

′
2; Q) ⊂ H2(M

′
1 ×M ′

2; Q).

Let T1 be the finite-index subgroup of T0 defined by T1 := (M ′
1 ×

M ′
2) o 〈τ〉, and let S1 < S be the preimage of T1 under the projection

S → T . Using the LHS spectral sequence for the short exact sequence
M ′

1 ×M ′
2 → T1 → 〈τ〉, we see that

H0(〈τ〉; H2(M
′
1 ×M ′

2; Q)) ⊂ H2(T1; Q)

has an infinite dimensional Q-subspace generated by the images of

{(τm
1 x1τ

−m
1 )⊗ (τn

2 x2τ
−n
2 ); m, n ∈ Z}.

In particular, the image of the map H2(L1 × L2; Q) → H2(T1; Q) in-
duced by inclusion is infinite-dimensional. But this contradicts the
hypothesis that H2(S1; Q) is finite dimensional, since the inclusion
(L1 × L2) → T1 factors through S1. This is the desired contradiction
which completes the proof. �

7. Normal subgroups with cyclic quotient

Proposition 7.1. If Γ1, . . . , Γn are groups of type FPn(Z) and φ :
Γ1 × · · · × Γn → Z has non-trivial restriction to each factor, then
Hj(ker φ; Z) is finitely generated for j ≤ n− 1.

Proof. We first prove the result in the special case where the restriction
of φ to each factor is epic. Thus we may write Γi = Li o 〈ti〉 where
S = ker φ, Li = S∩Γi is the kernel of φ|Γi

and φ(ti) is a fixed generator
of Z.

If n ≥ 2 and we fix a finite set Ai ⊂ Li such that Γi = 〈Ai, ti〉, then
S is generated by A1 ∪ · · · ∪ An ∪ {t1t−1

2 , . . . , t1t
−1
n }.

We proceed by induction on n (the initial case n = 1 being trivial),
considering the LHS spectral sequence in homology for the projection
of S to Γn,

1 → Sn−1 → S
pn→ Γn → 1,
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where Sn−1 is the kernel of the restriction of φ to Γ1 × · · · × Γn−1. In
particular, the inductive hypothesis applies to Sn−1.

Since Γn is of type FPn(Z) and Hq(Sn−1; Z) is finitely generated for
q ≤ n− 2, by induction, on the E2 page of the spectral sequence there
are only finitely generated groups in the rectangle 0 ≤ p ≤ n and
0 ≤ q ≤ n − 2. It follows that all of the groups on the E∞ page that
contribute to Hj(S; Z) with j ≤ n− 1 are finitely generated, with the
possible exception of that in position (0, n− 1).

On the E2 page, the group in position (0, n−1) is H0(Γn; Hn−1(Sn−1; Z)),
which is the quotient of Hn−1(Sn−1; Z) by the action of Γn. This action
is determined by taking a section of pn : S → Γn and using the conjuga-
tion action of S. The section we choose is that with image Ln o〈t1t−1

n 〉.
Since Ln and tn commute with Sn−1, we have

H0(Γn; Hn−1(Sn−1; Z)) = H0(〈t1〉; Hn−1(Sn−1; Z)) .

The latter group is the (0, n − 1) term on the E2 page of the spectral
sequence for the extension

1 → Sn−1 → Γ1 × · · · × Γn−1
φ→ Z → 1.

This is a 2-column spectral sequence, so the E2 page coincides with
the E∞ page. Since Γ1 × · · · × Γn−1 is of type FPn−1 (indeed of type
FPn), it follows that H0(〈t1〉; Hn−1(Sn−1; Z)) is finitely generated, and
the induction is complete.

For the general case, replace Z by the finite index subgroup φ(Γ1)∩
· · · ∩ φ(Γn) (= mZ, say); replace each Γi by the finite-index subgroup
∆i = Γi ∩ φ−1(mZ), and replace S by the finite-index subgroup T =
S∩(∆1×· · ·×∆n). Since φ(∆i) = mZ for each i, the above special-case
argument applies to T , to show that Hj(T ; Z) is finitely generated for
each 0 ≤ j ≤ n− 1. Moreover, T is normal in S, and we may consider
the LHS spectral sequence of the short exact sequence

1 → T → S → S/T → 1.

On the E2-page of this spectral sequence, the terms E2
pq in the region

0 ≤ q ≤ n − 1 are homology groups of the finite group T/S with
coefficients in the finitely generated modules Hq(T ; Z), and so they are
finitely generated abelian groups. But all the terms that contribute to
Hj(S; Z) for 0 ≤ j ≤ n − 1 lie in this region, so Hj(S; Z) are finitely
generated for j ≤ n− 1, as required. �

Theorem 7.2. Let Γ1, . . . , Γn be non-abelian limit groups and let S be
the kernel of an epimorphism φ : Γ1 × · · · × Γn → Z. If the restriction
of φ to each of the Γi is epic, then Hn(S; Q) has infinite Q-dimension.

Proof. The proof is by induction on n. The case n = 1 is proved in [8].
The preceding proposition shows that Hj(S; Z) is finitely generated,
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and hence Hj(S; Q) is finite dimensional for j < n. Considering the
LHS spectral sequence for

1 → Sn−1 → S
pn→ Γn → 1,

as in the proof of that proposition, we now have only finitely generated
groups in the region 0 ≤ q ≤ n − 2. (Recall that Γi is of type FP∞.)
In particular, the terms on the E2 page involved in the calculation of
Hn(S; Q) are all finitely generated except for

H0(Γn; Hn(Sn−1; Q)) = H0(〈t1〉; Hn(Sn−1; Q))

and

H1(Γn; Hn−1(Sn−1; Q)).

It suffices to prove that the latter is infinite dimensional over Q.
(The former is actually finite dimensional, but this is irrelevant.)

The module M = Hn−1(Sn−1; Q) is a homology group of the kernel
of a map from an FP∞ group to Z. It is thus a homology group of a
chain complex of free R = Q[t, t−1] modules of finite rank. The ring
R is Noetherian, so such a homology group is finitely generated as an
R-module. By the inductive hypothesis, M has infinite Q-dimension.
So by the classification of finitely generated modules over a principal
ideal domain, M has a free direct summand, that is M = M0 ⊕R.

The Γn-action on M factors through the quotient Γn → Γn/Ln =
〈tn〉, since Ln acts trivially, so the direct sum decomposition passes to
M considered as a QΓn module. Hence H1(Γn; M) = H1(Γn; M0) ⊕
H1(Γ; R).

Finally, as a QΓn module, R = QΓn⊗QLn Q, so by Shapiro’s Lemma
H1(Γn; R) ∼= H1(Ln; Q) (see for instance [13, III.6.2. and III.5]) .

As Ln is an infinite index normal subgroup of a non-abelian limit
group, it is not finitely generated, and therefore neither is H1(Ln; Q)
[8]. �

Theorem 4.4 follows immediately from Theorem 7.2 in the light of
the Künneth formula, after one has passed to a subgroup of finite index
to ensure that whenever Γi → Z is non-trivial it is onto.

8. Completion of the proof of the Main Theorem

The following lemma and its corollary provide an extension to the vir-
tual context of known results about finitely generated nilpotent groups.
We shall apply them to direct products of the virtually nilpotent quo-
tients of Γi/Li resulting from Theorem 4.2.

Lemma 8.1. Let G be a finitely generated virtually nilpotent group
and let S be a subgroup of infinite index. Then there exists a subgroup
K of finite index in G and an epimorphism f : K → Z such that
(S ∩K) ⊂ Ker(f).
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Proof. We argue by induction on the Hirsch length h(G), which is
strictly positive, since G is infinite.

In the initial case, h(G) = 1 means that G has an infinite cyclic
subgroup K of finite index. Since S has infinite index in G, S is finite,
so (S∩K) is trivial, and we can take f : K → Z to be an isomorphism.

For the inductive step, let H be a finite index torsion-free subgroup
of G, and C an infinite cyclic central subgroup of H. If CS has infinite
index in G, then the inductive hypothesis applies to H/C and we are
done. Otherwise, S has infinite index in CS, so C∩S has infinite index
in C ∼= Z. But then C ∩ S = {1}, and since C < H, it follows that
CS ∩H = C × (S ∩H). Put K = CS ∩H and let f be the projection
K → C with kernel S ∩H. �

We note that Lemma 8.1 would not remain true if one assumed only
that G were polycyclic. For example, it fails for lattices G = Z2 o 〈t〉
in the 3-dimensional Lie group Sol if one takes S = 〈t〉.

Repeated applications of Lemma 8.1 yield the following.

Corollary 8.2. Let G be a finitely generated, virtually nilpotent group
and let S be a subgroup of G. Then there is a subnormal chain S0 <
S1 < · · · < Sr = G, where S0 is a subgroup of finite index in S and for
each i the quotient group Si+1/Si is either finite or cyclic.

For the benefit of topologists, we should note that the following
algebraic argument is modelled on the geometric proof of the Double
Coset Lemma in [9].

Proof of Theorem C.
Let Γ = Γ1 × · · · × Γn. Recall that the Γi are nonabelian, the pro-

jections pi : S → Γi are surjective, and the intersections Li = S ∩ Γi

are nontrivial. Let L = L1 × · · · × Ln.
We only need consider the case when S has infinite index in Γ. We

shall assume in addition that for all finite index subgroups S0 of finite
index in S, and for all 0 ≤ j ≤ n, Hj(S0, Q) is finite-dimension, and
proceed to obtain a contradiction.

From Theorem 4.2 we know that each of the quotient groups Γi/Li

is virtually nilpotent, and hence so is Γ/L.
Since L ⊂ S and S has infinite index in Γ, the image S of S in Γ/L

is of infinite index and we may apply Lemma 8.1 with Γ/L in the role
of G. Let Λ < Γ be the preimage of the subgroup K provided by the
lemma. Note that Λ has finite index in Γ, contains L, and admits an
epimorphism f : Λ → Z such that S∩Λ ⊂ Ker(f). As in (2.4), we may
replace the groups Γi and S by finite-index subgroups so as to ensure
that L ⊂ S ⊂ N , where N is the kernel of an epimorphism Γ → Z.
By Theorem 4.4, there is a finite index subgroup N0 < N and a j ≤ n
such that Hj(N0; Q) is infinite dimensional.
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By Corollary 8.2 (applied to the image of S ∩ N0 in Γ/L) there is
a subgroup S0 contained in S ∩ N0, which has finite index in S, and
a subnormal chain of subgroups S0 / S1 / · · · / Sk = N0 with Si+1/Si

either finite or cyclic for each i. We now use the following lemma to
contradict the assumption that Hj(S0; Q) is finite-dimensional.

Lemma 8.3. Let S0 be a normal subgroup of S1 such that the quotient
group S1/S0 is either finite or cyclic. If Hj(S0; Q) is finite dimensional
for 0 ≤ j ≤ n, then Hj(S1; Q) is finite dimensional for 0 ≤ j ≤ n.

Proof. We will use the LHS spectral sequence for the group extension
S0 → S1 → (S1/S0), E2

p,q = Hp(S1/S0; Hq(S0; Q)), to show that the
homology groups Hj(S1; Q) also have finite Q-dimension for j ≤ n.

We proceed by induction on j. For the spectral sequence argument,
the inductive hypothesis shows that E2

p,q has finite Q-dimension for

q ≤ n. Moreover, E2
p,q = 0 for p > 1, since S1/S0 has homological

dimension at most 1 over Q; thus the derivatives on the E2 page all
vanish and the spectral sequence stabilizes at the E2 page. Hence, for
0 ≤ j ≤ n, we have

dimQ(Hj(S1; Q)) = dimQ(E2
0,j) + dimQ(E2

1,j−1) < ∞,

as required. �

Repeatedly applying this lemma to the subnormal sequence S0 /S1 /
· · · /Sk = N0 implies that Hj(N0; Q) is finite dimensional for all j ≤ n,
contradicting Theorem 4.4.

�

This completes the proof of Theorem C, from which Theorem A
follows immediately.

9. Proof of Theorem B from Theorem C

Let Γi, Li and S be as in the statement of Theorem B, but without
necessarily assuming that the Li are non-abelian for all i. We first dis-
cuss how this situation differs from the special case stated in Theorem
B.

If some Li is trivial, then S is isomorphic to a subgroup of the direct
product of the Γj with j 6= i, as in Proposition 3.1 (3). We now assume
that Li 6= {1} for each i.

As in Proposition 3.1 (2), we may replace each Γi by pi(S), where
pi : S → Γi is the projection, and hence assume that pi is surjective,
and so each Li is normal in Γi.

If some Li is nontrivial and abelian, then it is free abelian of finite
rank, by [6, Corollary 1.23]. Since Li is normal, it has finite index in
Γi, and it follows immediately from the ω-residually free property that
Γi is itself abelian.
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Arguing as in Proposition 3.1 (4), we may assume that only one of
the Γi is abelian, say Γ1, and that L1 is the only nontrivial abelian Li.
We may also assume that L1 is a direct factor of Γ1; say Γ1 = L1×M1.
But then S virtually splits as a direct product L1 × S ′, where S ′ =
S ∩ (Γ2 × · · ·Γn).

Note that the above reduction involved only one passage to a finite
index subgroup, and that was within the abelian factor Γ1. The other
Γi and Li are left unchanged. In particular, the Li are non-abelian.

We have now reduced to the situation of the statement of Theorem
B, with the additional hypothesis that each pi : S → Γi is surjective.

In particular, each Li is normal in Γi, and hence is of finite index for
i = 1, . . . , r.

Let Πr : Γ1 × · · · × Γn → Γ1 × · · · × Γr be the natural projection, let
Λ = L1 × · · · × Lr and let Ŝ0 = S ∩ Π−1

r (Λ). Then Ŝ0 has finite index

in S and Ŝ0 = Λ× Ŝ2, where Ŝ2 = Ŝ0 ∩ (Γr+1 × · · · × Γn). Theorem C

now says that that Ŝ2 has a subgroup of finite index S2 with Hk(S2; Q)
infinite dimensional for some k ≤ n− r.
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