On subdirect products of free pro-p groups and Demushkin groups of infinite depth

Dessislava H. Kochloukova* Hamish Short
Department of Mathematics, State University of Campinas (UNICAMP), Cx. P. 6065, 13083-970 Campinas, SP, Brazil
Centre de Mathématiques et d'Informatique (CMI) Université d'Aix-Marseille I (Université de Provence) 13453 Marseille, France

Abstract

We study subdirect products of free and Demushkin pro-p groups of depth ∞ developing theory similar to the abstract case, see [4]. Furthermore we classify when a subdirect product has homological type $F P_{m}$ for some $m \geq 2$, a problem still open for abstract groups for $m \geq 3$.

1 Introduction

In this paper we study homological properties of pro- p groups, in particular the homological type $F P_{m}$. A pro- p group G is of type $F P_{m}$ if there is a projective resolution of the trivial $\mathbb{Z}_{p}[[G]]$-module \mathbb{Z}_{p} with all modules finitely generated up to dimension m. Here $\mathbb{Z}_{p}[[G]]$ is the completed group algebra of G with coefficients in \mathbb{Z}_{p}, the pro-p completion of \mathbb{Z}. In the case of abstract groups there is a similar definition with \mathbb{Z}_{p} replaced by \mathbb{Z} and the completed group algebra replaced by the ordinary group algebra. In the abstract case there is a stronger property F_{m} that is finite presentability for $m=2$ and in general F_{m} is equivalent to $F P_{m}$ together with finite presentability if $m \geq 2$. In the pro- p setting the difference between these properties disappears i.e. a pro-p group has type $F P_{2}$ if and only if it is finitely presented as a pro- p group.

Our main result is a classification of subdirect products of type $F P_{m}$ of specific pro- p groups. In the abstract case the homological or homotopical properties of subgroups of direct products of free groups were first studied by Stallings

[^0]who gave the first example of a finitely presented group that is not of type $F P_{3}$. Later, Baumslag and Roseblade [2] showed that a subgroup of type $F P_{\infty}$ of a direct product of finitely generated free groups that intersects each factor nontrivially and maps surjectively to each factor of the direct product has finite index. It turned out that this holds for surface groups too [4] and recently was proved for abstract limit groups [5].

In this paper we treat only pro- p groups. We show that a pro- p version of the main result of [4] holds where surface groups are replaced by Demushkin groups of infinite depth i.e. pro- p completions of orientable surface groups. Recall that a subgroup H of $D=G_{1} \times \ldots \times G_{n}$ is a subdirect product if for every canonical projection $p_{i}: D \rightarrow G_{i}$ we have that $p_{i}(H)=G_{i}$.

Theorem A. Let each of G_{1}, \ldots, G_{n} be a free non-procyclic pro-p group or a non-abelian Demushkin group of depth $q=\infty$ and let $H \subseteq D=G_{1} \times G_{2} \times$ $\ldots \times G_{n}$ be a closed subdirect product i.e. H is a closed subgroup of D that projects surjectively to every G_{i}. Suppose further that H is finitely presented as a pro-p group and $H \cap G_{i} \neq 1$ for every $1 \leq i \leq n$. Then H is of type $F P_{m}$ if and only if for every projection $p_{j_{1}, \ldots, j_{m}}: D \rightarrow G_{j_{1}} \times \ldots \times G_{j_{m}}$ we have that $p_{j_{1}, \ldots, j_{m}}(H)$ has finite index in $G_{j_{1}} \times \ldots \times G_{j_{m}}$.

As a corollary we deduce the following result
Corollary B. Let each of G_{1}, \ldots, G_{n} be a free non-procyclic pro-p group or a non-abelian Demushkin group of depth $q=\infty$ and let $H \subseteq D=G_{1} \times G_{2} \times$ $\ldots \times G_{n}$ be a closed subdirect product such that H has homological type $F P_{n}$ and $H \cap G_{i} \neq 1$ for every $1 \leq i \leq n$. Then $\left(H \cap G_{1}\right) \times\left(H \cap G_{2}\right) \times \ldots \times\left(H \cap G_{n}\right)$ is a subgroup of finite index in H.

The main obstacle to transferring the result from the abstract case to the pro- p case is that geometric methods are not usually transferrable to the pro- p case. In the case of abstract groups a geometric result due to P. Scott [17] plays an important role in the proof of the results of Section 1.2 of [4] about primitive elements in surface groups. In the pro- p case we prove a similar result (see Theorem 2) using an approximation technique from the proof of the classification of Demushkin groups, see [20, Ch. 12. 3].

In a recent preprint [11] a new class of pro- p groups was defined that shares many properties with abstract limit groups : commutative transitive, finite cohomological dimension, type $F P_{\infty}$, non-positive Euler characteristic, free-by-nilpotent. The groups in this class were called pro-p limit groups as their definition uses the extension of centralizer approach from one of the definitions of abstract limit groups. The Demushkin groups of infinite depth with $d(G)=d$, the minimal number of generators, divisible by 4 are pro- p limit groups but even in the case $d=6, p \neq 2$ we do not know whether this is the case. Still it is tempting to conjecture that both Theorem A and Corollary B hold for pro-p limit groups.

Conjecture C. Both Theorem A and Corollary B hold if G_{1}, \ldots, G_{n} are non-abelian pro-p limit groups.

2 Preliminaries

For a pro- p group
where G_{i} are finite p-quotients of G, the completed group algebra with coefficients in k, where $k=\mathbb{Z}_{p}$ or $k=\mathbb{F}_{p}$, is a local ring defined by

$$
k[[G]]={\underset{\leftarrow i}{\lim } k\left[\left[G_{i}\right]\right]}
$$

A pro- $p k[[G]]$ module M is a pro- p additive group equipped with a continuous G-action i.e. M is an inverse limit of its p-primary finite $k[[G]]$-quotients (i.e. finite quotients of order a power of p). A subset Y of M is a set of topological generators of M if the smallest closed $k[[G]]$-submodule of M that contains Y is M. A subset Y generates M topologically if and only if the image of Y in $M \widehat{\otimes}_{k[[G]]} \mathbb{F}_{p}$ is a set of topological generators as a pro- $p \mathbb{F}_{p}$-module, here $\widehat{\otimes}_{R}$ is the completed tensor product over a profinite ring R. In particular M is (topologically) finitely generated over $k[[G]]$ if and only if $M \widehat{\otimes}_{k[[G]]} \mathbb{F}_{p}$ is finite (note that since \mathbb{F}_{p} is finitely generated as a $k[[G]]$-module $\left.M \widehat{\otimes}_{k[[G]]} \mathbb{F}_{p} \simeq M \otimes_{k[[G]]} \mathbb{F}_{p}\right)$. Then by the Nakayama lemma, M is abstractly finitely generated as a $k[[G]]$ module if and only if it is topologically finitely generated. By [20, Lemma 7.2.2] for M and N (top.) finitely generated pro- $p k[[G]]$-modules, any abstract $k[[G]]-$ homomorphism $\varphi: M \rightarrow N$ is continuous, hence a homomorphism of pro- p $k[[G]]$-modules.

Infinite Demushkin groups are pro-p Poincaré duality groups of dimension 2. The classification of such groups was started in [6], [7] and completed in [12], [18]. Such groups have an invariant q associated with them called depth and the simplest case is when $q \neq 2$ (note that the depth is always a power of p or infinity). A Demushkin group of depth $q \neq 2$ has a pro- p presentation $\left\langle y_{1}, y_{2}, \ldots, y_{d} \mid y_{1}^{q}\left[y_{1}, y_{2}\right] \ldots\left[y_{d-1}, y_{d}\right]\right\rangle$, where d is even and by definition $y_{1}^{\infty}=1$, a detailed proof can be found in [20, Ch. 12.3]. In the case when $q=\infty$ a Demushkin group is the pro- p completion of the orientable surface group. Pro- p Poincaré duality groups G share some of the properties of the abstract Poincaré duality groups, for example a subgroup of infinite index in G has cohomological dimension strictly smaller than the cohomological dimension of $G[14$, Ch. iii, 7 , Exer. 3b)]. In particular every subgroup of infinite index in G of cohomological dimension 2 is a free pro- p subgroup.

By $\operatorname{Kdim}(k[[G]])$ of $k[[G]]$ we denote the Krull dimension of the abstract (non-necessary commutative) rings suggested in [15]. In particular we will consider the Krull dimension of abstract finitely generated $k[[G]]$-modules (remember that topologically finitely generated pro- $p k[[G]]$-modules are abstractly finitely generated $k[[G]]$-modules and vice-versa, the topology is hidden in the topological ring $k[[G]])$. We will be interested only in the case when G is a finite rank pro- p group, in particular a (topologically) finitely generated nilpotent pro-p group. By the main results of [1] for a nilpotent pro-p group G of
finite rank $\operatorname{Kdim}\left(\mathbb{Z}_{p}[[G]]\right)=\operatorname{Kdim}\left(\mathbb{F}_{p}[[G]]\right)+1=d+1$, where d is the pro-p version of Hirsch length of G i.e. the number of copies of \mathbb{Z}_{p} in any sequence of subnormal subgroups of G with pro-cyclic quotients.

For a pro- p group G we define inductively $\gamma_{1}(G)=G$ and $\gamma_{i}(G)=\overline{\left[\gamma_{i-1}(G), G\right]}$, where overlining stands for closure.

Some of the proofs of our results use commutator calculations and we fix the basic commutator $[a, b]$ as $a^{-1} b^{-1} a b$ following the notations of [20], note the definition of basic commutator in [4] is slightly different. We denote by a^{b} the conjugate $b^{-1} a b$.

3 Auxiliary results on Demushkin groups

Proposition 1. Let G be a Demushkin group of depth $q=\infty$ and N be a nontrivial closed normal subgroup of G. Then there is a subgroup of finite index G_{0} in G such that G_{0} has a pro-p presentation

$$
\left\langle z_{1}, z_{2}, \ldots, z_{d} \mid r\right\rangle
$$

where d is even, \widetilde{F} is the free pro-p group with basis $z_{1}, z_{2}, \ldots, z_{d}, \pi: \widetilde{F} \rightarrow G_{0}$ is the canonical projection and

$$
r \equiv\left[z_{1}, z_{2}\right]\left[z_{3}, z_{4}\right] \ldots\left[z_{d-1}, z_{d}\right] \text { modulo }[[\widetilde{F}, \widetilde{F}], \widetilde{F}] \text { and } z_{1}, z_{2} \in \pi^{-1}\left(N \cap G_{0}\right)
$$

Proof. By going down to a subgroup of finite index in G if necessary we can assume that the image of N in $G /[G, G] G^{p}$ is non-trivial. By the classification of Demushkin groups, see [20, Ch. 12.3], G has a pro-p presentation

$$
\left\langle x_{1}, \ldots, x_{s} \mid\left[x_{1}, x_{2}\right]\left[x_{3}, x_{4}\right] \ldots\left[x_{s-1}, x_{s}\right]\right\rangle,
$$

s is the minimal number of (topological) generators of G and s is even. Furthermore x_{1} can be chosen arbitrary in $F \backslash[F, F] F^{p}$ modulo $[F, F]$, where F is a free pro- p group with a basis x_{1}, \ldots, x_{s} i.e. we can assume that the image of x_{1} in G is in $N[G, G]$ [20, Lemma 12.3.7]. Denote by e_{i} the image of x_{i} in $V=F /[F, F]$, which is a free \mathbb{Z}_{p}-module with basis $\left\{e_{1}, \ldots, e_{s}\right\}$.

Consider the isomorphism (with respect to the basis $\left\{e_{1}, \ldots, e_{s}\right\}$ of V) between $V \wedge V$ and the anti-symmetric \mathbb{Z}_{p}-linear maps $V \times V \rightarrow \mathbb{Z}_{p}$ that sends $\sum_{1 \leq i<j \leq s} z_{i j} e_{i} \wedge e_{j}$ to $f: V \times V \rightarrow \mathbb{Z}_{p}$ such that $f\left(e_{i}, e_{j}\right)=z_{i j}$. We view the image of $\left[x_{1}, x_{2}\right]\left[x_{3}, x_{4}\right] \ldots\left[x_{s-1}, x_{s}\right]$ in $F /[[F, F], F]$ as an element of $V \wedge V$ and hence as an anti-symmetric bilinear form φ on V i.e.

$$
\begin{aligned}
& \varphi\left(e_{i}, e_{j}\right)=0 \text { for }|j-i| \neq 1 \text { or } i<j, i \text { even, } \\
& \varphi\left(e_{1}, e_{2}\right)=\varphi\left(e_{3}, e_{4}\right)=\ldots=\varphi\left(e_{s-1}, e_{s}\right)=1
\end{aligned}
$$

Case 1. For some $v \in V \backslash \mathbb{Z}_{p} e_{1}$ in the image of N in $V, \varphi\left(e_{1}, v\right) \in \mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}$. By substituting $\varphi\left(e_{1}, v\right)^{-1} v$ for v, we can assume that $\varphi\left(e_{1}, v\right)=1$. Then there is a \mathbb{Z}_{p}-basis $\left\{e_{1}, v\right\} \cup\left\{v_{i}=e_{i}+\alpha_{i} e_{1}\right\}_{3 \leq i \leq s}$ of V for some $\alpha_{i} \in \mathbb{Z}_{p}$ such that
$e_{1} \wedge e_{2}+e_{3} \wedge e_{4}+\ldots+e_{s-1} \wedge e_{s}=e_{1} \wedge v+v_{3} \wedge v_{4}+\ldots+v_{s-1} \wedge v_{s} \in V \wedge V$. This basis of V lifts to a basis $y_{1}=x_{1}, y_{2}, \ldots, y_{s}$ of F such that

$$
r \equiv\left[y_{1}, y_{2}\right]\left[y_{3}, y_{4}\right] \ldots\left[y_{s-1}, y_{s}\right] \text { modulo }[[F, F], F]
$$

and the images of y_{1}, y_{2} in G are in $N[G, G]$. Then there are elements $\widetilde{y}_{1}, \widetilde{y}_{2}$ of F such that $\widetilde{y}_{1} y_{1}^{-1}, \widetilde{y}_{2} y_{2}^{-1} \in[F, F]$ and the images of $\widetilde{y}_{1}, \widetilde{y}_{2}$ in G are in N. Note that

$$
\left[y_{1}, y_{2}\right]\left[y_{3}, y_{4}\right] \ldots\left[y_{s-1}, y_{s}\right] \equiv\left[\widetilde{y}_{1}, \widetilde{y}_{2}\right]\left[y_{3}, y_{4}\right] \ldots\left[y_{s-1}, y_{s}\right] \text { modulo }[[F, F], F] .
$$

Thus $\widetilde{y}_{1}, \widetilde{y}_{2}, y_{3}, \ldots, y_{s}$ is the required basis of F and we are done.
Case 2. For every v in the image of N in V, either $v \in \mathbb{Z}_{p} e_{1}$ or $\varphi\left(e_{1}, v\right) \in p \mathbb{Z}_{p}$. In this case, consider the map $\chi: G \rightarrow \mathbb{Z} / p \mathbb{Z}$ that sends x_{1} to 1 and $\left\{x_{i}\right\}_{2 \leq i \leq s}$ to 0 and define G_{0} as the kernel of χ. Note that G_{0} is (topologically) generated by the images of

$$
\widetilde{X}=\left\{x_{1}^{p}, x_{i}^{x_{1}^{j}}\right\}_{2 \leq i \leq s, 0 \leq j \leq p-1}=\left\{z_{1}, z_{2}, \ldots, z_{d}\right\}
$$

in G, where $d=(s-1) p+1$ and by the Schreier formula the above set is a basis of a free pro- p subgroup \widetilde{F} in F. Note that for $w=\left[x_{1}, x_{2}\right] \ldots\left[x_{s-1}, x_{s}\right]$

$$
\begin{gathered}
w^{x_{1}^{j}}=\left[x_{1}, x_{2}^{x_{1}^{j}}\right]\left[x_{3}^{x_{1}^{j}}, x_{4}^{x_{1}^{j}}\right] \ldots\left[x_{s-1}^{x_{1}^{j}}, x_{s}^{x_{1}^{j}}\right]= \\
\left(x_{2}^{x_{1}^{j+1}}\right)^{-1} x_{2}^{x_{1}^{j}}\left[x_{3}^{x_{1}^{j}}, x_{4}^{x_{1}^{j}}\right] \ldots\left[x_{s-1}^{x_{1}^{j}}, x_{s}^{x_{1}^{j}}\right] .
\end{gathered}
$$

Then

$$
\begin{gathered}
\widetilde{w}=\prod_{j=p-1}^{0} w^{x_{1}^{j}} \equiv\left(x_{2}^{x_{1}^{p}}\right)^{-1} x_{2} \prod_{j=p-1}^{0}\left[x_{3}^{x_{1}^{j}}, x_{4}^{x_{1}^{j}}\right] \ldots\left[x_{s-1}^{x_{1}^{j}}, x_{s}^{x_{1}^{j}}\right]= \\
{\left[x_{1}^{p}, x_{2}\right] \prod_{j=p-1}^{0}\left[x_{3}^{x_{1}^{j}}, x_{4}^{x_{1}^{j}}\right] \ldots\left[x_{s-1}^{x_{1}^{j}}, x_{s}^{x_{1}^{j}}\right] \text { modulo }[[\widetilde{F}, \widetilde{F}], \widetilde{F}]}
\end{gathered}
$$

is a relation of G_{0}.
Let μ be the anti-symmetric bilinear form of $V_{0}=G_{0} /\left[G_{0}, G_{0}\right]$ corresponding to \widetilde{w} with respect to the basis Z_{0} of $V_{0}=G_{0} /\left[G_{0}, G_{0}\right]$ that is the image of \widetilde{X} in V_{0}. Denote by s_{i} the image of x_{i} in G. Note that since N is normal in G and $s_{1} \in N[G, G] \subseteq N G_{0}$

$$
s_{3}^{s_{1}} s_{3}^{-1}=\left[s_{1}, s_{3}^{-1}\right] \in\left[N G_{0}, G_{0}\right] \subseteq\left(N\left[G_{0}, G_{0}\right]\right) \cap G_{0}=\left(N \cap G_{0}\right)\left[G_{0}, G_{0}\right],
$$

and similarly $s_{4}^{s_{1}^{2}} s_{4}^{-1}, s_{4}^{s_{1}} s_{4}^{-1} \in\left(N \cap G_{0}\right)\left[G_{0}, G_{0}\right]$, hence

$$
s_{4}^{s_{1}^{2}}\left(s_{4}^{s_{1}}\right)^{-1} \in\left(N \cap G_{0}\right)\left[G_{0}, G_{0}\right] .
$$

Then for the images v_{1} and v_{2} of $s_{3}^{s_{1}} s_{3}^{-1}$ and $s_{4}^{s_{1}^{2}}\left(s_{4}^{s_{1}}\right)^{-1}$ in $G_{0} /\left[G_{0}, G_{0}\right]$

$$
\mu\left(v_{1}, v_{2}\right)=-1 \in \mathbb{Z}_{p} \backslash p \mathbb{Z}_{p} .
$$

If ν is the anti-symmetric bilinear form of V_{0} (with respect to the basis Z_{0}) corresponding to the unique relation of G_{0} (remember G_{0} is a Demushkin group with depth $q=\infty)$ then $\mu=r \nu$ for some $r \in \mathbb{Z}_{p}$. Thus $\nu\left(v_{1}, v_{2}\right) \in \mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}$ and v_{1} and v_{2} are elements of the image of $N \cap G_{0}$ in V_{0} such that the images of v_{1} and v_{2} in $V_{0} / p V_{0}$ are linearly independent. Then we can continue as in the first paragraph of the proof.

Theorem 2. Let G be a Demushkin group of depth $q=\infty$ and N be a nontrivial closed normal subgroup of G. Then there is a subgroup of finite index G_{0} in G such that G_{0} has a pro-p presentation

$$
\left\langle y_{1}, y_{2}, \ldots, y_{d} \mid\left[y_{1}, y_{2}\right]\left[y_{3}, y_{4}\right] \ldots\left[y_{d-1}, y_{d}\right]\right\rangle
$$

where d is even, F is the free pro-p group with basis y_{1}, \ldots, y_{d} and $y_{1}, y_{2} \in$ $\pi^{-1}\left(N \cap G_{0}\right)$ for the canonical epimorphism $\pi: F \rightarrow G_{0}$.

Proof. By Proposition 1 and by substituting for G a subgroup of finite index if necessary, we can assume that G has a minimal generating set z_{1}, \ldots, z_{d} such that

$$
w \equiv\left[z_{1}, z_{2}\right]\left[z_{3}, z_{4}\right] \ldots\left[z_{d-1}, z_{d}\right] \text { modulo }[[F, F], F]
$$

where F is the free pro- p group on the set z_{1}, \ldots, z_{d}, G has the pro- p presentation

$$
\left\langle z_{1}, \ldots, z_{d} \mid w\right\rangle
$$

and

$$
z_{1}, z_{2} \in \pi^{-1}(N)
$$

for the canonical map $\pi: F \rightarrow G$. Under the above assumptions (that are satisfied only after replacing G by a subgroup of finite index) we will show that G has a basis y_{1}, \ldots, y_{d} that satisfies the conclusion of the theorem (for $G=G_{0}$).

Define

$$
F_{k+1}=\overline{\left[F_{k}, F\right]} \text { for } k \geq 1 \text { and } F_{1}=F \text {, i.e. } F_{k+1}=\gamma_{k+1}(F)
$$

and suppose we have found

$$
z_{1}^{(i)}, \ldots, z_{d}^{(i)} \in F
$$

such that

$$
\begin{gathered}
z_{1}^{(1)}=z_{1}, \ldots, z_{d}^{(1)}=z_{d} \\
z_{j}^{(i+1)} \equiv z_{j}^{(i)} \text { modulo } F_{i+1} \text { for } 1 \leq j \leq d
\end{gathered}
$$

and

$$
\begin{equation*}
w=\left[z_{1}^{(i)}, z_{2}^{(i)}\right]\left[z_{3}^{(i)}, z_{4}^{(i)}\right] \ldots\left[z_{d-1}^{(i)}, z_{d}^{(i)}\right] f^{(i)} \text { for some } f^{(i)} \in F_{i+2} \tag{3}
\end{equation*}
$$

Then $z_{j}^{(i+1)}=r_{j}^{(i)} z_{j}^{(i)}$ for some $r_{j}^{(i)} \in F_{i+1}$ and

$$
\left[z_{j}^{(i+1)}, z_{j+1}^{(i+1)}\right]=\left[r_{j}^{(i)} z_{j}^{(i)}, r_{j+1}^{(i)} z_{j+1}^{(i)}\right] \equiv\left[r_{j}^{(i)}, z_{j+1}^{(i)}\right]\left[z_{j}^{(i)}, r_{j+1}^{(i)}\right]\left[z_{j}^{(i)}, z_{j+1}^{(i)}\right] \equiv
$$

$$
\left[r_{j}^{(i)}, z_{j+1}\right]\left[z_{j}, r_{j+1}^{(i)}\right]\left[z_{j}^{(i)}, z_{j+1}^{(i)}\right] \text { modulo } F_{i+3}
$$

Thus

$$
\begin{gathered}
{\left[z_{1}^{(i+1)}, z_{2}^{(i+1)}\right]\left[z_{3}^{(i+1)}, z_{4}^{(i+1)}\right] \ldots\left[z_{d-1}^{(i+1)}, z_{d}^{(i+1)}\right]=} \\
{\left[r_{1}^{(i)} z_{1}^{(i)}, r_{2}^{(i)} z_{2}^{(i)}\right] \ldots\left[r_{d-1}^{(i)} z_{d-1}^{(i)}, r_{d}^{(i)} z_{d}^{(i)}\right] \equiv} \\
{\left[z_{1}^{(i)}, z_{2}^{(i)}\right]\left[z_{3}^{(i)}, z_{4}^{(i)}\right] \ldots\left[z_{d-1}^{(i)}, z_{d}^{(i)}\right] \beta\left(r_{1}^{(i)}, \ldots, r_{d}^{(i)}\right) \text { modulo } F_{i+3}}
\end{gathered}
$$

where

$$
\beta\left(y_{1}, \ldots, y_{d}\right)=\left[y_{1}, z_{2}\right]\left[z_{1}, y_{2}\right] \ldots\left[y_{d-1}, z_{d}\right]\left[z_{d-1}, y_{d}\right]
$$

By (3)

$$
w \equiv\left[z_{1}^{(i+1)}, z_{2}^{(i+1)}\right]\left[z_{3}^{(i+1)}, z_{4}^{(i+1)}\right] \ldots\left[z_{d-1}^{(i+1)}, z_{d}^{(i+1)}\right] \text { modulo } F_{i+3}
$$

is equivalent to $r_{1}^{(i)}, \ldots, r_{d}^{(i)}$ being a solution of the equation

$$
\begin{equation*}
\beta\left(r_{1}^{(i)}, \ldots, r_{d}^{(i)}\right) \equiv f^{(i)} \text { modulo } F_{i+3} \tag{4}
\end{equation*}
$$

Such a solution exists since by [20, Prop. 12.3.11] β induces a surjective homomorphism from the cartesian product of d copies of F_{i+1} to F_{i+2} / F_{i+3} if $i \geq 1$. But such a solution is not unique and our proof from now on will depend on manipulating different solutions.

We want to show by induction on i that $r_{1}^{(i)}$ and $r_{2}^{(i)}$ can be chosen from $\pi^{-1}(N)$, hence $z_{1}^{(i)}, z_{2}^{(i)} \in \pi^{-1}(N)$ for all i. Then we can define y_{j} as the limit of $z_{j}^{(i)}$ when i goes to infinity and by (3) we get

$$
w=\left[y_{1}, y_{2}\right]\left[y_{3}, y_{4}\right] \ldots\left[y_{d-1}, y_{d}\right]
$$

and as N is a closed subgroup $y_{1}, y_{2} \in \pi^{-1}(N)$.
Note that since (4) is an equality modulo F_{i+3}, we are interested in $r_{j}^{(i)}$ only modulo F_{i+2} i.e. we are interested only in the image of $r_{j}^{(i)}$ in F_{i+1} / F_{i+2} and furthermore F_{i+1} / F_{i+2} is generated as an abelian pro-p group (i.e. as a $\mathbb{Z}_{p^{-}}$ module) by the images of the left normed commutators $\left[z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{i+1}}\right.$] for $j_{1}, j_{2}, \ldots, j_{i+1} \in\{1,2, \ldots, d\}$. Note that some of j_{1}, \ldots, j_{i+1} might be equal. If $\left\{j_{1}, j_{2}, \ldots, j_{i+1}\right\} \cap\{1,2\} \neq \emptyset$ using the fact that $z_{1}, z_{2} \in \pi^{-1}(N)$ we get that $\left[z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{i+1}}\right] \in \pi^{-1}(N)$. If $\left\{j_{1}, j_{2}, \ldots, j_{i+1}\right\} \subseteq\{3,4, \ldots, d\}$ then by the Jacobi identity

$$
\left[z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{i+1}}, z_{2}\right] \in \prod_{t=1}^{i+1}\left[F_{i+1}, z_{j_{t}}\right] \subseteq \prod_{j=3}^{d}\left[F_{i+1}, z_{j}\right] \text { modulo } F_{i+3}
$$

Thus the factors $\left[z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{i+1}}\right]$ of $r_{1}^{(i)}$ with $\left\{j_{1}, j_{2}, \ldots, j_{i+1}\right\} \subseteq\{3,4, \ldots, d\}$ can be moved from $r_{1}^{(i)}$ and distributed between $r_{j}^{(i)}$ for $j \geq 3$ i.e. we can suppose that $r_{1}^{(i)} \in \pi^{-1}(N)$. The same argument works for $r_{2}^{(i)}$.

4 On subdirect products and virtual nilpotent quotients

We start with a pro- p version of a P. Hall theorem. Overline always denotes closure.

Lemma 5. Let G be a free pro-p group and N be a non-trivial closed subgroup of G. Then there is a closed subgroup G_{0} of finite index in G such that G_{0} has a basis that contains at least one element of N.

Proof. As N is non-trivial there is a subgroup G_{0} of finite index in G such that the image of $N \cap G_{0}$ in $G_{0} / \overline{\left[G_{0}, G_{0}\right] G_{0}^{p}}$ is non-trivial. Note that any basis of $G_{0} / \overline{\left[G_{0}, G_{0}\right] G_{0}^{p}}$ as a vector space over \mathbb{F}_{p} lifts to a basis of G_{0} as a free pro-p group.

We remind the reader that a pro- p HNN extension is proper if the base group embeds in the HNN-extension, see [16, p. 392].

Lemma 6. Let G be a proper pro-p HNN extension with a base subgroup B and associated subgroup C such that B is topologically finitely generated and G is finitely presented as a pro-p group. Then C is topologically finitely generated.

Proof. By [16, Prop. 9.4.2] there is a Mayer-Vietoris sequence

$$
\ldots \rightarrow H_{2}\left(G, \mathbb{F}_{p}\right) \rightarrow H_{1}\left(C, \mathbb{F}_{p}\right) \rightarrow H_{1}\left(B, \mathbb{F}_{p}\right) \rightarrow \ldots
$$

Since $H_{2}\left(G, \mathbb{F}_{p}\right)$ and $H_{1}\left(B, \mathbb{F}_{p}\right)$ are finite we get that $H_{1}\left(C, \mathbb{F}_{p}\right) \simeq C / \overline{[C, C] C^{p}}$ is finite i.e. C is topologically finitely generated.

The following is a pro- p version of [3, Thm. 4.6]. Our proof relies significantly on the auxiliary results proved in the last section and the original proof of [3, Thm. 4.6].

Theorem 7. Let G be a free pro-p group or a Demushkin group of depth $q=\infty$ and A be an arbitrary pro-p group. Let H be a closed subgroup of $A \times G$ that intersects G non-trivially and is finitely presented as a pro-p group. Then $H \cap A$ is (topologically) finitely generated.

Proof. Let $\rho: A \times G \rightarrow G$ be the canonical projection. If $H \cap G$ has finite index in $\rho(H)$ then H contains $(H \cap A) \times(H \cap G)$ as a subgroup of finite index. Hence $(H \cap A) \times(H \cap G)$ and $L=H \cap A$ are finitely presented as pro- p groups and so are topologically finitely generated.

Assume now that $H \cap G$ has infinite index in $\rho(H)$. Note that $p(H)$ is either a Demushkin group of depth $q=\infty$ or a free pro- p group, thus without loss of generality we can assume that $\rho(H)=G$, hence G is (topologically) finitely generated. In particular $N=H \cap G$ is a non-trivial closed normal subgroup of infinite index in G and so N is a free pro-p subgroup. By Theorem 2 and Lemma 5 going down to a subgroup of finite index in G if necessary we can assume that either

1. $\rho(H)=G$ is a Demushkin group with a presentation $\left\langle y_{1}, y_{2}, \ldots, y_{d}\right|$ $\left.\left[y_{1}, y_{2}\right]\left[y_{3}, y_{4}\right] \ldots\left[y_{d-1}, y_{d}\right]\right\rangle$ where d is even and $y_{1}, y_{2} \in N$
or
2. $\rho(H)=G$ is a free pro- p group with a basis y_{1}, \ldots, y_{d} and $y_{1} \in N$,
where in both cases we have identified y_{1}, \ldots, y_{d} with their images in G.
Note that there is a short exact sequence of groups

$$
1 \rightarrow L \rightarrow H \rightarrow G \rightarrow 1
$$

Since G is finitely presented as a pro- p group and H is (topologically) finitely generated there is a finite subset c_{1}, \ldots, c_{n} of L such that

$$
c_{1}^{H}, \ldots, c_{n}^{H} \text { topologically generate } L, \text { hence }
$$

c_{1}, \ldots, c_{n} (topologically) generate $L / \overline{[L, L] L^{p}}$ as a pro- $p \mathbb{F}_{p}[[G]]-$ module.
Assume first that we are in case 1, i.e. G is a Demushkin group. Pick $\widehat{y}_{i} \in$ $\rho^{-1}\left(y_{i}\right) \cap H$; we can indeed take $\widehat{y}_{1}=y_{1}$ and $\widehat{y}_{2}=y_{2}$, thus

$$
\left[\widehat{y}_{1}, \widehat{y}_{2}\right]\left[\widehat{y}_{3}, \widehat{y}_{4}\right] \ldots\left[\widehat{y}_{d-1}, \widehat{y}_{d}\right]=c_{0} \in L
$$

Let V be the closed subgroup of H topologically generated by L and the free prop group F_{1} topologically generated by $y_{2}, \widehat{y}_{3}, \ldots, \widehat{y}_{d}$ (remember that a subgroup of infinite index in a Demushkin group has cohomological dimension less than 2 , hence by [16, Thm. 7.7.4] the subgroup of G generated by y_{2}, \ldots, y_{d} is a free pro- p group). As y_{1} centralizes L and the quotient of G by the normal closed subgroup generated by y_{1} is isomorphic to F_{1} we have that

$$
c_{1}, \ldots, c_{n} \text { (topologically) generate } L /\left[\overline{[L, L] L^{p}} \text { as a pro- } p \mathbb{F}_{p}\left[\left[F_{1}\right]\right]\right. \text { - module, }
$$

hence V is a split extension of L by F_{1} and V is topologically generated by c_{1}, \ldots, c_{n} and $y_{2}, \widehat{y}_{3}, \ldots, \widehat{y}_{d}$ (i.e. the images of these elements in $V=V / \overline{[V, V] V^{p}}$ generate \widetilde{V} as \mathbb{F}_{p}-vector space). Thus H has a pro- p presentation

$$
\begin{gathered}
\left\langle c_{1}, \ldots, c_{n}, y_{1}, y_{2}, \widehat{y}_{3}, \ldots, \widehat{y}_{d}\right| \text { relations of } V, y_{1}^{-1} l y_{1}=l \text { for all } l \in L, \\
\left.y_{1}^{-1} y_{2} y_{1}=y_{2}\left[\widehat{y}_{3}, \widehat{y}_{4}\right] \ldots\left[\widehat{y}_{d-1}, \widehat{y}_{d}\right] c_{0}^{-1}\right\rangle .
\end{gathered}
$$

In particular H is a proper pro- p HNN extension with a base V, a stable letter y_{1} and associated subgroup $L \times \mathbb{Z}_{p}$, where \mathbb{Z}_{p} is topologically generated by y_{2}. By Lemma $6, L \times \mathbb{Z}_{p}$ is (topologically) finitely generated, hence L is (topologically) finitely generated as required.

Now suppose that we are in case 2, i.e. G is a free pro- p group. As in the proof of [13, Thm. 1] we pick $g_{i} \in \rho^{-1}\left(y_{i}\right) \cap H$ for $2 \leq i \leq m$. Let D be the closed subgroup of H topologically generated by L and the free pro- $p F_{2}$ group (topologically) generated by g_{2}, \ldots, g_{m}. As $t=y_{1}$ centralizes L we have

$$
c_{1}, \ldots, c_{n} \text { (topologically) generate } L / \overline{[L, L] L^{p}} \text { as a pro- } p \mathbb{F}_{p}\left[\left[F_{2}\right]\right] \text { - module. }
$$

Thus D is topologically generated by c_{1}, \ldots, c_{n} and g_{2}, \ldots, g_{m} (i.e. the images of these elements in $\widetilde{D}=D / \overline{[D, D] D^{p}}$ generate \widetilde{D} as a \mathbb{F}_{p}-vector space). Note that L is a proper pro- p HNN-extension with a pro- p presentation

$$
\left.\langle D, t| t^{-1} b t=b \text { for all } b \in L\right\rangle
$$

Then by Lemma $6, L$ is (topologically) finitely generated.
The following result is a pro- p version of [3, Thm. 4.7].
Theorem 8. Let G_{1}, \ldots, G_{n} be free pro-p groups or Demushkin groups of depth $q=\infty$ and $H \subseteq D=G_{1} \times G_{2} \times \ldots \times G_{n}$ be a closed subdirect product (i.e. the projection of H to every factor G_{i} is surjective) that intersects every factor non-trivially. Suppose further that H is finitely presented as a pro-p group.

Then there exist closed subgroups K_{i} of finite index in G_{i} such that

$$
\gamma_{n-1}\left(K_{i}\right) \subseteq H \cap G_{i} \subseteq K_{i}
$$

and the projection of H to any $j<n$ factors of D is again a finitely presented pro-p group.

Proof. The proof of Theorem 8 follows from Theorem 7 in exactly the same way as the proof of [3, Thm. 4.7] follows from [3, Thm. 4.4 \& Them. 4.6].

5 On subdirect products of type $F P_{m}$

Lemma 9. Let Q_{1}, \ldots, Q_{n} be (topologically) finitely generated nilpotent pro-p groups and for all $1 \leq i \leq n$ let V_{i} be a (topologically) finitely generated pro$p \mathbb{F}_{p}\left[\left[Q_{i}\right]\right]$-module that contains a free pro-p $\mathbb{F}_{p}\left[\left[Q_{i}\right]\right]$-submodule W_{i}. Suppose that \widetilde{Q} is a closed subgroup of $Q=Q_{1} \times \ldots \times Q_{n}$ such that $V_{1} \widehat{\otimes}_{\mathbb{F}_{p}} \ldots \widehat{\otimes}_{\mathbb{F}_{p}} V_{n}$ is (topologically) finitely generated as a $\mathbb{F}_{p}[[\widetilde{Q}]]$-module. Then \widetilde{Q} has finite index in Q.

Proof. Note that $\mathbb{F}_{p}[[Q]] \simeq \mathbb{F}_{p}\left[\left[Q_{1}\right]\right] \widehat{\otimes}_{\mathbb{F}_{p}} \ldots \widehat{\otimes}_{\mathbb{F}_{p}} \mathbb{F}_{p}\left[\left[Q_{n}\right]\right] \simeq W_{1} \widehat{\otimes}_{\mathbb{F}_{p}} \ldots \widehat{\otimes}_{\mathbb{F}_{p}} W_{n}=$: W is a $\mathbb{F}_{p}[[\widetilde{Q}]]$-submodule of $V_{1} \widehat{\otimes}_{\mathbb{F}_{p}} \ldots \widehat{\otimes}_{\mathbb{F}_{p}} V_{n}$ and $\mathbb{F}_{p}[[\widetilde{Q}]]$ is left and right Noetherian as an abstract ring. Since being (topologically) finitely generated over $\mathbb{F}_{p}[[\widetilde{Q}]]$ and being abstractly finitely generated over $\mathbb{F}_{p}[[\widetilde{Q}]]$ for a profinite $\mathbb{F}_{p}[[\widetilde{Q}]]-$ module are the same we get that $\mathbb{F}_{p}[[Q]]=W$ is finitely generated (topologically or abstractly is the same) over $\mathbb{F}_{p}[[\widetilde{Q}]]$. Thus the Krull dimension of $\mathbb{F}_{p}[[Q]]$ is at most the Krull dimension of $\mathbb{F}_{p}[[\widetilde{Q}]]$.

On the other hand the Krull dimension of $\mathbb{F}_{p}[[H]]$ for a nilpotent pro- p group is the pro- p Hirsch length of H [1, Thm. A \& Cor. C]. Then \widetilde{Q} and Q have the same pro- p Hirsch length and so \widetilde{Q} has finite index in Q.

The following result has a version for abstract limit groups [10, Cor. 8].

Proposition 10. Let G be a non-abelian pro-p group which is either a (topologically) finitely generated free pro-p group or a Demushkin group of depth $q=\infty$. Then for any prime number p and any natural number $k \geq 2$ the quotient $V=\gamma_{k}(G) / \overline{\left[\gamma_{k}(G), \gamma_{k}(G)\right] \gamma_{k}(G)^{p}}$ has a non-zero pro-p $\mathbb{F}_{p}[[Q]]$-submodule that is free, where $Q=G / \gamma_{k}(G)$.

Proof. Consider first the case when G is a Demushkin group. Then there is an exact sequence of $\mathbb{Z}_{p}[[G]]$-modules coming from the presentation $\left\langle y_{1}, y_{2}, \ldots, y_{d}\right|$ $\left.\left[y_{1}, y_{2}\right]\left[y_{3}, y_{4}\right] \ldots\left[y_{d-1}, y_{d}\right]\right\rangle$

$$
\mathcal{P}: 0 \rightarrow \mathbb{Z}_{p}[[G]] \rightarrow \mathbb{Z}_{p}[[G]]^{d} \rightarrow \mathbb{Z}_{p}[[G]] \rightarrow \mathbb{Z}_{p} \rightarrow 0
$$

where \mathbb{Z}_{p} is in dimension -1. Then

$$
\mathcal{R}=\mathcal{P} \otimes_{\mathbb{Z}_{p}\left[\left[\gamma_{k}(G)\right]\right]} \mathbb{F}_{p}: 0 \rightarrow \mathbb{F}_{p}[[Q]] \rightarrow \mathbb{F}_{p}[[Q]]^{d} \rightarrow \mathbb{F}_{p}[[Q]] \rightarrow \mathbb{F}_{p} \rightarrow 0
$$

has homology groups

$$
H_{2}(\mathcal{R})=H_{2}\left(\gamma_{k}(G), \mathbb{F}_{p}\right)=0 \text { and } H_{1}(\mathcal{R})=H_{1}\left(\gamma_{k}(G), \mathbb{F}_{p}\right) \simeq V,
$$

where the first equality comes from the fact that a subgroup of infinite index in a Demushkin group is a free pro- p group.

Note that Q is a torsion-free nilpotent pro- p group, $\mathbb{F}_{p}[[Q]]$ is a left and a right Noetherian ring without zero divisors $[8$, Cor. 7.25$]$. Then $\mathbb{F}_{p}[[Q]]$ is an Ore ring and has a classical ring of quotients, denoted by K. Note that K is an abstract ring (not a topological one) and it is flat as an abstract $\mathbb{F}_{p}[[Q]]$-module, hence $\otimes_{\left.\mathbb{F}_{p}[Q]\right]} K$ is an exact functor (here \otimes is the abstract tensor product) and $V \otimes_{\mathbb{F}_{p}[[Q]]} K \simeq H_{1}(\mathcal{R}) \otimes_{\mathbb{F}_{p}[[Q]]} K \simeq H_{1}\left(\mathcal{R} \otimes_{\mathbb{F}_{p}[[Q]]} K\right) \simeq K^{a}$ for some non-negative integer a. Then

$$
\begin{gathered}
2-d=\sum_{i}(-1)^{i} \operatorname{dim}_{K} H_{i}\left(\mathcal{R} \otimes_{\mathbb{F}_{p}[[Q]]} K\right)= \\
\sum_{i}(-1)^{i} \operatorname{dim}_{K}\left(H_{i}(\mathcal{R}) \otimes_{\mathbb{F}_{p}[[Q]]} K\right)=-\operatorname{dim}_{K}\left(H_{1}(\mathcal{R}) \otimes_{\mathbb{F}_{p}[[Q]]} K\right)
\end{gathered}
$$

and so

$$
V \otimes_{\mathbb{F}_{p}[[Q]]} K \simeq K^{d-2} .
$$

Since $d>2$ we see that V has a subquotient (and hence a submodule) isomorphic to $\mathbb{F}_{p}[[Q]]$.

Now suppose that G is a free pro- p group. Then there is an exact complex of $\mathbb{Z}_{p}[[G]]$-modules

$$
\mathcal{P}: 0 \rightarrow \mathbb{Z}_{p}[[G]]^{d} \rightarrow \mathbb{Z}_{p}[[G]] \rightarrow \mathbb{Z}_{p} \rightarrow 0
$$

where d is the minimal number of generators of G. As in the first case the complex $\mathcal{R}=\mathcal{P} \otimes_{\mathbb{Z}_{p}\left[\left[\gamma_{k}(G)\right]\right]} \mathbb{F}_{p}$ has a unique non-trivial homology concentrated in dimension 1 and it is isomorphic to V. Thus $V \otimes_{\left.\mathbb{F}_{p}[Q Q]\right]} K \simeq H_{1}(\mathcal{R}) \otimes_{\mathbb{F}_{p}[[Q]]} K \simeq$ $H_{1}\left(\mathcal{R} \otimes_{\mathbb{F}_{p}[[Q]]} K\right) \simeq K^{d-1}$ and since $d>1$ we see that V has a subquotient (and hence a submodule) isomorphic to $\mathbb{F}_{p}[[Q]]$.

Theorem 11. Let each of G_{1}, \ldots, G_{n} be a free non-procyclic pro-p group or a non-abelian Demushkin group of depth $q=\infty$ and let $H \subseteq D=G_{1} \times G_{2} \times$ $\ldots \times G_{n}$ be a closed subdirect product such that H is finitely presented as a pro-p group and $H \cap G_{i} \neq 1$ for every $1 \leq i \leq n$. Then H is of type $F P_{m}$ if and only if for every projection $p_{j_{1}, \ldots, j_{m}}: D \rightarrow G_{j_{1}} \times \ldots \times G_{j_{m}}$, the image $p_{j_{1}, \ldots, j_{m}}(H)$ has finite index in $G_{j_{1}} \times \ldots \times G_{j_{m}}$.

Proof. By Theorem 8 and by replacing G_{i} by a subgroup of finite index for $1 \leq i \leq n$ if necessary we can assume that

$$
\gamma_{n-1}\left(G_{i}\right) \subseteq H
$$

Let L be the direct product $\gamma_{n-1}\left(G_{1}\right) \times \ldots \times \gamma_{n-1}\left(G_{n}\right)$ and $Q_{i}=G_{i} / \gamma_{n-1}\left(G_{i}\right)$. Thus L is a closed normal subgroup of H and $Q=H / L \subseteq D / L=Q_{1} \times$ $\ldots \times Q_{n}$ is nilpotent and topologically finitely generated, hence of finite rank as a pro- p group. Then by $\left[9\right.$, Thm. 3.2] H is of type $F P_{m}$ if and only if the (continuous) homology groups $H_{i}\left(L, \mathbb{F}_{p}\right)$ are (topologically) finitely generated as $\mathbb{F}_{p}[[Q]]$-modules via the action of Q induced by conjugation for all $i \leq m$.

Note that $\gamma_{n-1}\left(G_{i}\right)$ are pro- p subgroups of infinite index in G_{i}, hence are free pro- p groups. By the Kunneth formula and the fact that $H_{k}\left(\gamma_{n-1}\left(G_{i}\right), \mathbb{F}_{p}\right)=0$ for $k \geq 2$ we get that for $i \leq n$

$$
H_{i}\left(L, \mathbb{F}_{p}\right) \simeq \oplus_{1 \leq j_{1}<j_{2}<\cdots<j_{i} \leq n} H_{1}\left(\gamma_{n-1}\left(G_{j_{1}}\right), \mathbb{F}_{p}\right) \widehat{\otimes}_{\mathbb{F}_{p}} \ldots \widehat{\otimes}_{\mathbb{F}_{p}} H_{1}\left(\gamma_{n-1}\left(G_{j_{i}}\right), \mathbb{F}_{p}\right)
$$

where $\widehat{\otimes}$ is the completed tensor product and the action of Q on

$$
H_{1}\left(\gamma_{n-1}\left(G_{j_{1}}\right), \mathbb{F}_{p}\right) \widehat{\otimes}_{\mathbb{F}_{p}} \ldots \widehat{\otimes}_{\mathbb{F}_{p}}\left(H_{1}\left(\gamma_{n-1}\left(G_{j_{i}}\right), \mathbb{F}_{p}\right)\right.
$$

factors through the canonical map $h_{j_{1}, \ldots, j_{i}}: Q_{1} \times \ldots \times Q_{n} \rightarrow Q_{j_{1}} \times \ldots \times Q_{j_{i}}$. Thus if $h_{j_{1}, \ldots, j_{i}}(Q)$ has finite index in $Q_{j_{1}} \times \ldots \times Q_{j_{i}}$ for any $1 \leq j_{1}<j_{2}<\cdots<j_{i} \leq n$ and $i \leq m$ we get that $H_{i}\left(L, \mathbb{F}_{p}\right)$ is (topologically) finitely generated as a $\mathbb{F}_{p}[[Q]]-$ module for $i \leq m$. Hence H is of type $F P_{m}$ as required.

For the converse suppose that H has type $F P_{m}$. Then by Lemma 9 and Proposition $10 h_{j_{1}, \ldots, j_{i}}\left(Q_{1} \times \ldots \times Q_{n}\right)$ has finite index in $Q_{j_{1}} \times \ldots \times Q_{j_{i}}$, hence $p_{j_{1}, \ldots, j_{m}}(H)$ has finite index in $G_{j_{1}} \times \ldots \times G_{j_{m}}$.

Corollary 12. Let each of G_{1}, \ldots, G_{n} be a free non-procyclic pro-p group or a non-abelian Demushkin group of depth $q=\infty$ and let $H \subseteq D=G_{1} \times G_{2} \times$ $\ldots \times G_{n}$ be a closed subdirect product such that H has homological type $F P_{n}$ and $H \cap G_{i} \neq 1$ for every $1 \leq i \leq n$. Then $\left(H \cap G_{1}\right) \times\left(H \cap G_{2}\right) \times \ldots \times\left(H \cap G_{n}\right)$ is a subgroup of finite index in H and H has finite index in D.

Proof. By Theorem 11, H has finite index in D, hence $H \cap G_{i}$ is a subgroup of finite index in G_{i}.

Corollary 13. Let each of G_{1}, \ldots, G_{m} be a free pro-p group or a Demushkin group of depth $q=\infty$, n a positive integer such that $n<m$ and G_{i} non-abelian exactly for $i \leq n$. Let $H \subseteq D=G_{1} \times G_{2} \times \ldots \times G_{m}$ be a closed subdirect product
such that H has homological type $F P_{n}$ and $H \cap G_{i} \neq 1$ for every $1 \leq i \leq m$. Then $\left(H \cap G_{1}\right) \times\left(H \cap G_{2}\right) \times \ldots \times\left(H \cap G_{n}\right) \times\left(H \cap\left(G_{n+1} \times \ldots \times G_{m}\right)\right)$ is a subgroup of finite index in H.

Proof. By the previous corollary $H_{1}=\left(H \cap G_{1}\right) \times\left(H \cap G_{2}\right) \times \ldots \times\left(H \cap G_{n}\right)$ has a finite index in $H_{0}=H \cap\left(G_{1} \times G_{2} \times \ldots \times G_{n}\right)$ and H_{0} has finite index in $G_{1} \times G_{2} \times \ldots \times G_{n}$.

Let

$$
p: D_{1}=H_{1} \times G_{n+1} \times \ldots \times G_{m} \rightarrow G_{n+1} \times \ldots \times G_{m}
$$

be the canonical projection. Then $\operatorname{ker}(p)=H_{1} \subset H \cap D_{1}$ and so $H \cap D_{1}=$ $\operatorname{Ker}(p) \times p\left(H \cap D_{1}\right)=H_{1} \times\left(H \cap\left(G_{n+1} \times \ldots \times G_{m}\right)\right)$ is a subgroup of finite index in H.

References

[1] K. Ardakov, Krull dimension of Iwasawa algebras, J. Algebra 280 (2004), no. 1, 190-206
[2] G. Baumslag, J.E. Roseblade, Subgroups of direct products of free groups, J. London Math. Soc. (2) 30 (1984), 44-52
[3] M. R. Bridson, C. F. Miller III, Structure and finiteness properties of subdirect products of groups, Proc. LMS 98 (2009), 631-651
[4] M. R. Bridson, J. Howie, C. F. Miller III; H. Short, The subgroups of direct products of surface groups, Dedicated to John Stallings on the occasion of his 65th birthday, Geom. Dedicata 92 (2002), 95-103
[5] M. R. Bridson, J. Howie, C. F. Miller III; H. Short, Subgroups of direct products of limit groups, Annals of Math. Vol 170, 2009, 1447-1467
[6] S. Demushkin, On the maximal p-extension of a local field, Izv. Akad. Nauk, USSR Math. Ser. 25, 329-346 (1961).
[7] S. Demushkin, On 2-extensions of a local field, Sibrisk. Math. Z. 4, 951-955 (1963).
[8] J. D. Dixon, M. P. F. du Sautoy, A. Mann, D. Segal, Analytic pro-p groups, Second edition. Cambridge Studies in Advanced Mathematics, 61. Cambridge University
[9] J. D. King, Homological finiteness conditions for pro-p groups, Comm. Algebra 27 (1999), no. 10, 4969-4991
[10] D. Kochloukova, On subdirect products of type $F P_{m}$ of limit groups, J. Group Theory (2010), 1-20
[11] D. Kochloukova, P. Zalesskii, On pro-p analogues of limit groups via extensions of centralizers, to appear in Maths. Z.
[12] J. P. Labute, Classification of Demushkin groups, Canad. J. Math. 19, 106132 (1967).
[13] C. F. Miller III, Subgroups of direct products with a free group, Q. J. Math. 53 (2002), no. 4, 503-506
[14] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer-Verlag, Berlin, 2000
[15] R. Rentschler, P. Gabriel, Sur la dimension des anneaux et ensembles ordonnés, C. R. Acad. Sci. Paris Sér. A-B 2651967
[16] L. Ribes, P. Zalesskii, Profinite groups, A Series of Modern Surveys in Mathematics, 40. Springer-Verlag, Berlin
[17] P. Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978), no. 3, 555-565
[18] J. -P. Serre, Structure of certain pro-p-groups, Séminaire Bourbaki 1962/63 (252), 357-364 (1971).
[19] J.R. Stallings, A finitely presented group whose 3-dimensional homology group is not finitely generated, Amer. J. Math. 85, (1963) 541-543
[20] J. S. Wilson, Profinite groups, London Mathematical Society Monographs, New Series, 19. The Clarendon Press, Oxford University Press, New York, 1998

[^0]: *Partially supported by "bolsa de produtividade de pesquisa" from CNPq, Brazil 2000 AMS Math. Subject Classification 20J05, 20E18

