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Abstract

We study subdirect products of free and Demushkin pro-p groups of
depth ∞ developing theory similar to the abstract case, see [4]. Further-
more we classify when a subdirect product has homological type FPm for
some m ≥ 2, a problem still open for abstract groups for m ≥ 3.

1 Introduction

In this paper we study homological properties of pro-p groups, in particular the
homological type FPm. A pro-p group G is of type FPm if there is a projective
resolution of the trivial Zp[[G]]-module Zp with all modules finitely generated
up to dimension m. Here Zp[[G]] is the completed group algebra of G with
coefficients in Zp, the pro-p completion of Z. In the case of abstract groups
there is a similar definition with Zp replaced by Z and the completed group
algebra replaced by the ordinary group algebra. In the abstract case there is a
stronger property Fm that is finite presentability for m = 2 and in general Fm
is equivalent to FPm together with finite presentability if m ≥ 2. In the pro-p
setting the difference between these properties disappears i.e. a pro-p group has
type FP2 if and only if it is finitely presented as a pro-p group.

Our main result is a classification of subdirect products of type FPm of spe-
cific pro-p groups. In the abstract case the homological or homotopical proper-
ties of subgroups of direct products of free groups were first studied by Stallings
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who gave the first example of a finitely presented group that is not of type FP3.
Later, Baumslag and Roseblade [2] showed that a subgroup of type FP∞ of a
direct product of finitely generated free groups that intersects each factor non-
trivially and maps surjectively to each factor of the direct product has finite
index. It turned out that this holds for surface groups too [4] and recently was
proved for abstract limit groups [5].

In this paper we treat only pro-p groups. We show that a pro-p version of the
main result of [4] holds where surface groups are replaced by Demushkin groups
of infinite depth i.e. pro-p completions of orientable surface groups. Recall that
a subgroup H of D = G1× . . .×Gn is a subdirect product if for every canonical
projection pi : D → Gi we have that pi(H) = Gi.

Theorem A. Let each of G1, . . . , Gn be a free non-procyclic pro-p group or
a non-abelian Demushkin group of depth q = ∞ and let H ⊆ D = G1 × G2 ×
. . . × Gn be a closed subdirect product i.e. H is a closed subgroup of D that
projects surjectively to every Gi. Suppose further that H is finitely presented as
a pro-p group and H ∩Gi 6= 1 for every 1 ≤ i ≤ n. Then H is of type FPm if
and only if for every projection pj1,...,jm : D → Gj1 × . . . × Gjm we have that
pj1,...,jm(H) has finite index in Gj1 × . . .×Gjm .

As a corollary we deduce the following result

Corollary B. Let each of G1, . . . , Gn be a free non-procyclic pro-p group or
a non-abelian Demushkin group of depth q = ∞ and let H ⊆ D = G1 × G2 ×
. . . × Gn be a closed subdirect product such that H has homological type FPn
and H ∩Gi 6= 1 for every 1 ≤ i ≤ n. Then (H ∩G1)× (H ∩G2)× . . .× (H ∩Gn)
is a subgroup of finite index in H.

The main obstacle to transferring the result from the abstract case to the
pro-p case is that geometric methods are not usually transferrable to the pro-p
case. In the case of abstract groups a geometric result due to P. Scott [17]
plays an important role in the proof of the results of Section 1.2 of [4] about
primitive elements in surface groups. In the pro-p case we prove a similar
result (see Theorem 2) using an approximation technique from the proof of the
classification of Demushkin groups, see [20, Ch. 12. 3].

In a recent preprint [11] a new class of pro-p groups was defined that shares
many properties with abstract limit groups : commutative transitive, finite
cohomological dimension, type FP∞, non-positive Euler characteristic, free-
by-nilpotent. The groups in this class were called pro-p limit groups as their
definition uses the extension of centralizer approach from one of the definitions
of abstract limit groups. The Demushkin groups of infinite depth with d(G) = d,
the minimal number of generators, divisible by 4 are pro-p limit groups but even
in the case d = 6, p 6= 2 we do not know whether this is the case. Still it is
tempting to conjecture that both Theorem A and Corollary B hold for pro-p
limit groups.

Conjecture C. Both Theorem A and Corollary B hold if G1, . . . , Gn are
non-abelian pro-p limit groups.
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2 Preliminaries

For a pro-p group
G = lim

←−
i

Gi,

where Gi are finite p-quotients of G, the completed group algebra with coeffi-
cients in k, where k = Zp or k = Fp, is a local ring defined by

k[[G]] = lim
←−

i

k[[Gi]].

A pro-p k[[G]] module M is a pro-p additive group equipped with a continuous
G-action i.e. M is an inverse limit of its p-primary finite k[[G]]-quotients (i.e.
finite quotients of order a power of p). A subset Y of M is a set of topological
generators of M if the smallest closed k[[G]]-submodule of M that contains Y
is M . A subset Y generates M topologically if and only if the image of Y in
M⊗̂k[[G]]Fp is a set of topological generators as a pro-p Fp-module, here ⊗̂R is
the completed tensor product over a profinite ring R. In particular M is (topo-
logically) finitely generated over k[[G]] if and only if M⊗̂k[[G]]Fp is finite (note
that since Fp is finitely generated as a k[[G]]-module M⊗̂k[[G]]Fp 'M⊗k[[G]]Fp).
Then by the Nakayama lemma, M is abstractly finitely generated as a k[[G]]-
module if and only if it is topologically finitely generated. By [20, Lemma 7.2.2]
for M and N (top.) finitely generated pro-p k[[G]]-modules, any abstract k[[G]]-
homomorphism ϕ : M → N is continuous, hence a homomorphism of pro-p
k[[G]]-modules.

Infinite Demushkin groups are pro-p Poincaré duality groups of dimension
2. The classification of such groups was started in [6], [7] and completed in
[12], [18]. Such groups have an invariant q associated with them called depth
and the simplest case is when q 6= 2 (note that the depth is always a power
of p or infinity). A Demushkin group of depth q 6= 2 has a pro-p presentation
〈y1, y2, . . . , yd | yq1[y1, y2] . . . [yd−1, yd]〉, where d is even and by definition y∞1 = 1,
a detailed proof can be found in [20, Ch. 12.3]. In the case when q = ∞
a Demushkin group is the pro-p completion of the orientable surface group.
Pro-p Poincaré duality groups G share some of the properties of the abstract
Poincaré duality groups, for example a subgroup of infinite index in G has
cohomological dimension strictly smaller than the cohomological dimension of
G [14, Ch. iii, 7, Exer. 3b)]. In particular every subgroup of infinite index in G
of cohomological dimension 2 is a free pro-p subgroup.

By Kdim(k[[G]]) of k[[G]] we denote the Krull dimension of the abstract
(non-necessary commutative) rings suggested in [15]. In particular we will
consider the Krull dimension of abstract finitely generated k[[G]]-modules (re-
member that topologically finitely generated pro-p k[[G]]-modules are abstractly
finitely generated k[[G]]-modules and vice-versa, the topology is hidden in the
topological ring k[[G]]). We will be interested only in the case when G is a
finite rank pro-p group, in particular a (topologically) finitely generated nilpo-
tent pro-p group. By the main results of [1] for a nilpotent pro-p group G of
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finite rank Kdim(Zp[[G]]) = Kdim(Fp[[G]]) + 1 = d + 1, where d is the pro-p
version of Hirsch length of G i.e. the number of copies of Zp in any sequence of
subnormal subgroups of G with pro-cyclic quotients.

For a pro-p groupG we define inductively γ1(G) = G and γi(G) = [γi−1(G), G],
where overlining stands for closure.

Some of the proofs of our results use commutator calculations and we fix
the basic commutator [a, b] as a−1b−1ab following the notations of [20], note the
definition of basic commutator in [4] is slightly different. We denote by ab the
conjugate b−1ab.

3 Auxiliary results on Demushkin groups

Proposition 1. Let G be a Demushkin group of depth q =∞ and N be a non-
trivial closed normal subgroup of G. Then there is a subgroup of finite index G0

in G such that G0 has a pro-p presentation

〈z1, z2, . . . , zd | r〉,

where d is even, F̃ is the free pro-p group with basis z1, z2, . . . , zd, π : F̃ → G0

is the canonical projection and

r ≡ [z1, z2][z3, z4] . . . [zd−1, zd] modulo [[F̃ , F̃ ], F̃ ] and z1, z2 ∈ π−1(N ∩G0).

Proof. By going down to a subgroup of finite index in G if necessary we can
assume that the image of N in G/[G,G]Gp is non-trivial. By the classification
of Demushkin groups, see [20, Ch. 12.3], G has a pro-p presentation

〈x1, . . . , xs | [x1, x2][x3, x4] . . . [xs−1, xs]〉,

s is the minimal number of (topological) generators of G and s is even. Fur-
thermore x1 can be chosen arbitrary in F \ [F, F ]F p modulo [F, F ], where F is
a free pro-p group with a basis x1, . . . , xs i.e. we can assume that the image
of x1 in G is in N [G,G] [20, Lemma 12.3.7]. Denote by ei the image of xi in
V = F/[F, F ], which is a free Zp-module with basis {e1, . . . , es}.

Consider the isomorphism (with respect to the basis {e1, . . . , es} of V ) be-
tween V ∧ V and the anti-symmetric Zp-linear maps V × V → Zp that sends∑

1≤i<j≤s zijei ∧ ej to f : V × V → Zp such that f(ei, ej) = zij . We view the
image of [x1, x2][x3, x4] . . . [xs−1, xs] in F/[[F, F ], F ] as an element of V ∧V and
hence as an anti-symmetric bilinear form ϕ on V i.e.

ϕ(ei, ej) = 0 for | j − i |6= 1 or i < j, i even,

ϕ(e1, e2) = ϕ(e3, e4) = . . . = ϕ(es−1, es) = 1.

Case 1. For some v ∈ V \ Zpe1 in the image of N in V , ϕ(e1, v) ∈ Zp \ pZp.
By substituting ϕ(e1, v)−1v for v, we can assume that ϕ(e1, v) = 1. Then there
is a Zp-basis {e1, v} ∪ {vi = ei + αie1}3≤i≤s of V for some αi ∈ Zp such that

4



e1 ∧ e2 + e3 ∧ e4 + . . .+ es−1 ∧ es = e1 ∧ v + v3 ∧ v4 + . . .+ vs−1 ∧ vs ∈ V ∧ V .
This basis of V lifts to a basis y1 = x1, y2, . . . , ys of F such that

r ≡ [y1, y2][y3, y4] . . . [ys−1, ys] modulo [[F, F ], F ]

and the images of y1, y2 in G are in N [G,G]. Then there are elements ỹ1, ỹ2 of
F such that ỹ1y−1

1 , ỹ2y
−1
2 ∈ [F, F ] and the images of ỹ1, ỹ2 in G are in N . Note

that

[y1, y2][y3, y4] . . . [ys−1, ys] ≡ [ỹ1, ỹ2][y3, y4] . . . [ys−1, ys] modulo [[F, F ], F ].

Thus ỹ1, ỹ2, y3, . . . , ys is the required basis of F and we are done.
Case 2. For every v in the image of N in V , either v ∈ Zpe1 or ϕ(e1, v) ∈ pZp.
In this case, consider the map χ : G→ Z/pZ that sends x1 to 1 and {xi}2≤i≤s
to 0 and define G0 as the kernel of χ. Note that G0 is (topologically) generated
by the images of

X̃ = {xp1, x
xj
1
i }2≤i≤s,0≤j≤p−1 = {z1, z2, . . . , zd}

in G, where d = (s−1)p+1 and by the Schreier formula the above set is a basis
of a free pro-p subgroup F̃ in F . Note that for w = [x1, x2] . . . [xs−1, xs]

wx
j
1 = [x1, x

xj
1

2 ][xx
j
1

3 , x
xj
1

4 ] . . . [xx
j
1
s−1, x

xj
1
s ] =

(xx
j+1
1

2 )−1x
xj
1

2 [xx
j
1

3 , x
xj
1

4 ] . . . [xx
j
1
s−1, x

xj
1
s ].

Then

w̃ =
0∏

j=p−1

wx
j
1 ≡ (xx

p
1

2 )−1x2

0∏
j=p−1

[xx
j
1

3 , x
xj
1

4 ] . . . [xx
j
1
s−1, x

xj
1
s ] =

[xp1, x2]
0∏

j=p−1

[xx
j
1

3 , x
xj
1

4 ] . . . [xx
j
1
s−1, x

xj
1
s ] modulo [[F̃ , F̃ ], F̃ ]

is a relation of G0.
Let µ be the anti-symmetric bilinear form of V0 = G0/[G0, G0] corresponding

to w̃ with respect to the basis Z0 of V0 = G0/[G0, G0] that is the image of X̃ in
V0. Denote by si the image of xi in G. Note that since N is normal in G and
s1 ∈ N [G,G] ⊆ NG0

ss13 s
−1
3 = [s1, s−1

3 ] ∈ [NG0, G0] ⊆ (N [G0, G0]) ∩G0 = (N ∩G0)[G0, G0],

and similarly ss
2
1

4 s
−1
4 , ss14 s

−1
4 ∈ (N ∩G0)[G0, G0], hence

s
s21
4 (ss14 )−1 ∈ (N ∩G0)[G0, G0].

Then for the images v1 and v2 of ss13 s
−1
3 and s

s21
4 (ss14 )−1 in G0/[G0, G0]

µ(v1, v2) = −1 ∈ Zp \ pZp.
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If ν is the anti-symmetric bilinear form of V0 (with respect to the basis Z0)
corresponding to the unique relation of G0 (remember G0 is a Demushkin group
with depth q =∞) then µ = rν for some r ∈ Zp. Thus ν(v1, v2) ∈ Zp \ pZp and
v1 and v2 are elements of the image of N ∩G0 in V0 such that the images of v1
and v2 in V0/pV0 are linearly independent. Then we can continue as in the first
paragraph of the proof.

Theorem 2. Let G be a Demushkin group of depth q = ∞ and N be a non-
trivial closed normal subgroup of G. Then there is a subgroup of finite index G0

in G such that G0 has a pro-p presentation

〈y1, y2, . . . , yd | [y1, y2][y3, y4] . . . [yd−1, yd]〉,

where d is even, F is the free pro-p group with basis y1, . . . , yd and y1, y2 ∈
π−1(N ∩G0) for the canonical epimorphism π : F → G0.

Proof. By Proposition 1 and by substituting for G a subgroup of finite index if
necessary, we can assume that G has a minimal generating set z1, . . . , zd such
that

w ≡ [z1, z2][z3, z4] . . . [zd−1, zd] modulo [[F, F ], F ],

where F is the free pro-p group on the set z1, . . . , zd, G has the pro-p presentation

〈z1, . . . , zd | w〉

and
z1, z2 ∈ π−1(N)

for the canonical map π : F → G. Under the above assumptions (that are
satisfied only after replacing G by a subgroup of finite index) we will show that
G has a basis y1, . . . , yd that satisfies the conclusion of the theorem (for G = G0).

Define

Fk+1 = [Fk, F ] for k ≥ 1 and F1 = F, i.e. Fk+1 = γk+1(F )

and suppose we have found

z
(i)
1 , . . . , z

(i)
d ∈ F

such that
z
(1)
1 = z1, . . . , z

(1)
d = zd,

z
(i+1)
j ≡ z(i)

j modulo Fi+1 for 1 ≤ j ≤ d

and
w = [z(i)

1 , z
(i)
2 ][z(i)

3 , z
(i)
4 ] . . . [z(i)

d−1, z
(i)
d ]f (i) for some f (i) ∈ Fi+2. (3)

Then z
(i+1)
j = r

(i)
j z

(i)
j for some r(i)j ∈ Fi+1 and

[z(i+1)
j , z

(i+1)
j+1 ] = [r(i)j z

(i)
j , r

(i)
j+1z

(i)
j+1] ≡ [r(i)j , z

(i)
j+1][z(i)

j , r
(i)
j+1][z(i)

j , z
(i)
j+1] ≡
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[r(i)j , zj+1][zj , r
(i)
j+1][z(i)

j , z
(i)
j+1] modulo Fi+3.

Thus
[z(i+1)

1 , z
(i+1)
2 ][z(i+1)

3 , z
(i+1)
4 ] . . . [z(i+1)

d−1 , z
(i+1)
d ] =

[r(i)1 z
(i)
1 , r

(i)
2 z

(i)
2 ] . . . [r(i)d−1z

(i)
d−1, r

(i)
d z

(i)
d ] ≡

[z(i)
1 , z

(i)
2 ][z(i)

3 , z
(i)
4 ] . . . [z(i)

d−1, z
(i)
d ]β(r(i)1 , . . . , r

(i)
d ) modulo Fi+3,

where
β(y1, . . . , yd) = [y1, z2][z1, y2] . . . [yd−1, zd][zd−1, yd].

By (3)

w ≡ [z(i+1)
1 , z

(i+1)
2 ][z(i+1)

3 , z
(i+1)
4 ] . . . [z(i+1)

d−1 , z
(i+1)
d ] modulo Fi+3

is equivalent to r(i)1 , . . . , r
(i)
d being a solution of the equation

β(r(i)1 , . . . , r
(i)
d ) ≡ f (i) modulo Fi+3. (4)

Such a solution exists since by [20, Prop. 12.3.11] β induces a surjective homo-
morphism from the cartesian product of d copies of Fi+1 to Fi+2/Fi+3 if i ≥ 1.
But such a solution is not unique and our proof from now on will depend on
manipulating different solutions.

We want to show by induction on i that r(i)1 and r
(i)
2 can be chosen from

π−1(N), hence z(i)
1 , z

(i)
2 ∈ π−1(N) for all i. Then we can define yj as the limit

of z(i)
j when i goes to infinity and by (3) we get

w = [y1, y2][y3, y4] . . . [yd−1, yd]

and as N is a closed subgroup y1, y2 ∈ π−1(N).
Note that since (4) is an equality modulo Fi+3, we are interested in r(i)j only

modulo Fi+2 i.e. we are interested only in the image of r(i)j in Fi+1/Fi+2 and
furthermore Fi+1/Fi+2 is generated as an abelian pro-p group (i.e. as a Zp-
module) by the images of the left normed commutators [zj1 , zj2 , . . . , zji+1 ] for
j1, j2, . . . , ji+1 ∈ {1, 2, . . . , d}. Note that some of j1, . . . , ji+1 might be equal. If
{j1, j2, . . . , ji+1} ∩ {1, 2} 6= ∅ using the fact that z1, z2 ∈ π−1(N) we get that
[zj1 , zj2 , . . . , zji+1 ] ∈ π−1(N). If {j1, j2, . . . , ji+1} ⊆ {3, 4, . . . , d} then by the
Jacobi identity

[zj1 , zj2 , . . . , zji+1 , z2] ∈
i+1∏
t=1

[Fi+1, zjt ] ⊆
d∏
j=3

[Fi+1, zj ] modulo Fi+3.

Thus the factors [zj1 , zj2 , . . . , zji+1 ] of r(i)1 with {j1, j2, . . . , ji+1} ⊆ {3, 4, . . . , d}
can be moved from r

(i)
1 and distributed between r

(i)
j for j ≥ 3 i.e. we can

suppose that r(i)1 ∈ π−1(N). The same argument works for r(i)2 .
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4 On subdirect products and virtual nilpotent
quotients

We start with a pro-p version of a P. Hall theorem. Overline always denotes
closure.

Lemma 5. Let G be a free pro-p group and N be a non-trivial closed subgroup
of G. Then there is a closed subgroup G0 of finite index in G such that G0 has
a basis that contains at least one element of N .

Proof. As N is non-trivial there is a subgroup G0 of finite index in G such that
the image of N ∩ G0 in G0/[G0, G0]Gp0 is non-trivial. Note that any basis of
G0/[G0, G0]Gp0 as a vector space over Fp lifts to a basis of G0 as a free pro-p
group.

We remind the reader that a pro-p HNN extension is proper if the base group
embeds in the HNN-extension, see [16, p. 392].

Lemma 6. Let G be a proper pro-p HNN extension with a base subgroup B and
associated subgroup C such that B is topologically finitely generated and G is
finitely presented as a pro-p group. Then C is topologically finitely generated.

Proof. By [16, Prop. 9.4.2] there is a Mayer-Vietoris sequence

. . .→ H2(G,Fp)→ H1(C,Fp)→ H1(B,Fp)→ . . .

Since H2(G,Fp) and H1(B,Fp) are finite we get that H1(C,Fp) ' C/[C,C]Cp
is finite i.e. C is topologically finitely generated.

The following is a pro-p version of [3, Thm. 4.6]. Our proof relies significantly
on the auxiliary results proved in the last section and the original proof of [3,
Thm. 4.6].

Theorem 7. Let G be a free pro-p group or a Demushkin group of depth q =∞
and A be an arbitrary pro-p group. Let H be a closed subgroup of A × G that
intersects G non-trivially and is finitely presented as a pro-p group. Then H∩A
is (topologically) finitely generated.

Proof. Let ρ : A×G→ G be the canonical projection. If H ∩G has finite index
in ρ(H) then H contains (H ∩A)× (H ∩G) as a subgroup of finite index. Hence
(H ∩A)× (H ∩G) and L = H ∩A are finitely presented as pro-p groups and so
are topologically finitely generated.

Assume now that H ∩G has infinite index in ρ(H). Note that p(H) is either
a Demushkin group of depth q = ∞ or a free pro-p group, thus without loss
of generality we can assume that ρ(H) = G, hence G is (topologically) finitely
generated. In particular N = H ∩ G is a non-trivial closed normal subgroup
of infinite index in G and so N is a free pro-p subgroup. By Theorem 2 and
Lemma 5 going down to a subgroup of finite index in G if necessary we can
assume that either
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1. ρ(H) = G is a Demushkin group with a presentation 〈y1, y2, . . . , yd |
[y1, y2][y3, y4] . . . [yd−1, yd]〉 where d is even and y1, y2 ∈ N

or
2. ρ(H) = G is a free pro-p group with a basis y1, . . . , yd and y1 ∈ N ,
where in both cases we have identified y1, . . . , yd with their images in G.
Note that there is a short exact sequence of groups

1→ L→ H → G→ 1.

Since G is finitely presented as a pro-p group and H is (topologically) finitely
generated there is a finite subset c1, . . . , cn of L such that

cH1 , . . . , c
H
n topologically generate L, hence

c1, . . . , cn (topologically) generate L/[L,L]Lp as a pro-p Fp[[G]]−module.

Assume first that we are in case 1, i.e. G is a Demushkin group. Pick ŷi ∈
ρ−1(yi) ∩H; we can indeed take ŷ1 = y1 and ŷ2 = y2, thus

[ŷ1, ŷ2][ŷ3, ŷ4] . . . [ŷd−1, ŷd] = c0 ∈ L.

Let V be the closed subgroup of H topologically generated by L and the free pro-
p group F1 topologically generated by y2, ŷ3, . . . , ŷd (remember that a subgroup
of infinite index in a Demushkin group has cohomological dimension less than
2, hence by [16, Thm. 7.7.4] the subgroup of G generated by y2, . . . , yd is a free
pro-p group). As y1 centralizes L and the quotient of G by the normal closed
subgroup generated by y1 is isomorphic to F1 we have that

c1, . . . , cn (topologically) generate L/[L,L]Lp as a pro-p Fp[[F1]]−module,

hence V is a split extension of L by F1 and V is topologically generated by
c1, . . . , cn and y2, ŷ3, . . . , ŷd (i.e. the images of these elements in Ṽ = V/[V, V ]V p

generate Ṽ as Fp-vector space). Thus H has a pro-p presentation

〈c1, . . . , cn, y1, y2, ŷ3, . . . , ŷd | relations of V, y−1
1 ly1 = l for all l ∈ L,

y−1
1 y2y1 = y2[ŷ3, ŷ4] . . . [ŷd−1, ŷd]c−1

0 〉.

In particular H is a proper pro-p HNN extension with a base V , a stable letter y1
and associated subgroup L×Zp, where Zp is topologically generated by y2. By
Lemma 6, L×Zp is (topologically) finitely generated , hence L is (topologically)
finitely generated as required.

Now suppose that we are in case 2, i.e. G is a free pro-p group. As in the
proof of [13, Thm. 1] we pick gi ∈ ρ−1(yi) ∩ H for 2 ≤ i ≤ m. Let D be the
closed subgroup of H topologically generated by L and the free pro-p F2 group
(topologically) generated by g2, . . . , gm. As t = y1 centralizes L we have

c1, . . . , cn (topologically) generate L/[L,L]Lp as a pro-p Fp[[F2]]−module.

9



Thus D is topologically generated by c1, . . . , cn and g2, . . . , gm (i.e. the images
of these elements in D̃ = D/[D,D]Dp generate D̃ as a Fp-vector space). Note
that L is a proper pro-p HNN-extension with a pro-p presentation

〈D, t | t−1bt = b for all b ∈ L〉.

Then by Lemma 6, L is (topologically) finitely generated.

The following result is a pro-p version of [3, Thm. 4.7].

Theorem 8. Let G1, . . . , Gn be free pro-p groups or Demushkin groups of depth
q = ∞ and H ⊆ D = G1 × G2 × . . . × Gn be a closed subdirect product (i.e.
the projection of H to every factor Gi is surjective) that intersects every factor
non-trivially. Suppose further that H is finitely presented as a pro-p group.

Then there exist closed subgroups Ki of finite index in Gi such that

γn−1(Ki) ⊆ H ∩Gi ⊆ Ki

and the projection of H to any j < n factors of D is again a finitely presented
pro-p group.

Proof. The proof of Theorem 8 follows from Theorem 7 in exactly the same way
as the proof of [3, Thm. 4.7] follows from [3, Thm. 4.4 & Them. 4.6].

5 On subdirect products of type FPm

Lemma 9. Let Q1, . . . , Qn be (topologically) finitely generated nilpotent pro-p
groups and for all 1 ≤ i ≤ n let Vi be a (topologically) finitely generated pro-
p Fp[[Qi]]-module that contains a free pro-p Fp[[Qi]]-submodule Wi. Suppose
that Q̃ is a closed subgroup of Q = Q1 × . . .×Qn such that V1⊗̂Fp

. . . ⊗̂Fp
Vn is

(topologically) finitely generated as a Fp[[Q̃]]-module. Then Q̃ has finite index
in Q.

Proof. Note that Fp[[Q]] ' Fp[[Q1]]⊗̂Fp
. . . ⊗̂Fp

Fp[[Qn]] ' W1⊗̂Fp
. . . ⊗̂Fp

Wn =:
W is a Fp[[Q̃]]-submodule of V1⊗̂Fp

. . . ⊗̂Fp
Vn and Fp[[Q̃]] is left and right Noethe-

rian as an abstract ring. Since being (topologically) finitely generated over
Fp[[Q̃]] and being abstractly finitely generated over Fp[[Q̃]] for a profinite Fp[[Q̃]]-
module are the same we get that Fp[[Q]] = W is finitely generated ( topologically
or abstractly is the same) over Fp[[Q̃]]. Thus the Krull dimension of Fp[[Q]] is
at most the Krull dimension of Fp[[Q̃]].

On the other hand the Krull dimension of Fp[[H]] for a nilpotent pro-p group
is the pro-p Hirsch length of H [1, Thm. A & Cor. C]. Then Q̃ and Q have the
same pro-p Hirsch length and so Q̃ has finite index in Q.

The following result has a version for abstract limit groups [10, Cor. 8].
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Proposition 10. Let G be a non-abelian pro-p group which is either a (topologi-
cally) finitely generated free pro-p group or a Demushkin group of depth q =∞.
Then for any prime number p and any natural number k ≥ 2 the quotient
V = γk(G)/[γk(G), γk(G)]γk(G)p has a non-zero pro-p Fp[[Q]]-submodule that
is free, where Q = G/γk(G).

Proof. Consider first the case when G is a Demushkin group. Then there is an
exact sequence of Zp[[G]]-modules coming from the presentation 〈y1, y2, . . . , yd |
[y1, y2][y3, y4] . . . [yd−1, yd]〉

P : 0→ Zp[[G]]→ Zp[[G]]d → Zp[[G]]→ Zp → 0,

where Zp is in dimension -1. Then

R = P ⊗Zp[[γk(G)]] Fp : 0→ Fp[[Q]]→ Fp[[Q]]d → Fp[[Q]]→ Fp → 0

has homology groups

H2(R) = H2(γk(G),Fp) = 0 and H1(R) = H1(γk(G),Fp) ' V,

where the first equality comes from the fact that a subgroup of infinite index in
a Demushkin group is a free pro-p group.

Note that Q is a torsion-free nilpotent pro-p group, Fp[[Q]] is a left and a
right Noetherian ring without zero divisors [8, Cor. 7.25]. Then Fp[[Q]] is an
Ore ring and has a classical ring of quotients, denoted by K. Note that K is an
abstract ring (not a topological one) and it is flat as an abstract Fp[[Q]]-module,
hence ⊗Fp[[Q]]K is an exact functor (here ⊗ is the abstract tensor product) and
V ⊗Fp[[Q]]K ' H1(R)⊗Fp[[Q]]K ' H1(R⊗Fp[[Q]]K) ' Ka for some non-negative
integer a. Then

2− d =
∑
i

(−1)idimKHi(R⊗Fp[[Q]] K) =

∑
i

(−1)idimK(Hi(R)⊗Fp[[Q]] K) = −dimK(H1(R)⊗Fp[[Q]] K)

and so
V ⊗Fp[[Q]] K ' Kd−2.

Since d > 2 we see that V has a subquotient (and hence a submodule) isomorphic
to Fp[[Q]].

Now suppose that G is a free pro-p group. Then there is an exact complex
of Zp[[G]]-modules

P : 0→ Zp[[G]]d → Zp[[G]]→ Zp → 0

where d is the minimal number of generators of G. As in the first case the
complex R = P ⊗Zp[[γk(G)]] Fp has a unique non-trivial homology concentrated
in dimension 1 and it is isomorphic to V . Thus V ⊗Fp[[Q]]K ' H1(R)⊗Fp[[Q]]K '
H1(R⊗Fp[[Q]]K) ' Kd−1 and since d > 1 we see that V has a subquotient (and
hence a submodule) isomorphic to Fp[[Q]].
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Theorem 11. Let each of G1, . . . , Gn be a free non-procyclic pro-p group or
a non-abelian Demushkin group of depth q = ∞ and let H ⊆ D = G1 × G2 ×
. . .×Gn be a closed subdirect product such that H is finitely presented as a pro-p
group and H ∩Gi 6= 1 for every 1 ≤ i ≤ n. Then H is of type FPm if and only
if for every projection pj1,...,jm : D → Gj1 × . . . × Gjm , the image pj1,...,jm(H)
has finite index in Gj1 × . . .×Gjm .

Proof. By Theorem 8 and by replacing Gi by a subgroup of finite index for
1 ≤ i ≤ n if necessary we can assume that

γn−1(Gi) ⊆ H.

Let L be the direct product γn−1(G1)× . . .× γn−1(Gn) and Qi = Gi/γn−1(Gi).
Thus L is a closed normal subgroup of H and Q = H/L ⊆ D/L = Q1 ×
. . . × Qn is nilpotent and topologically finitely generated, hence of finite rank
as a pro-p group. Then by [9, Thm. 3.2] H is of type FPm if and only if the
(continuous) homology groups Hi(L,Fp) are (topologically) finitely generated
as Fp[[Q]]-modules via the action of Q induced by conjugation for all i ≤ m.

Note that γn−1(Gi) are pro-p subgroups of infinite index in Gi, hence are free
pro-p groups. By the Kunneth formula and the fact that Hk(γn−1(Gi),Fp) = 0
for k ≥ 2 we get that for i ≤ n

Hi(L,Fp) ' ⊕1≤j1<j2<···<ji≤nH1(γn−1(Gj1),Fp)⊗̂Fp
. . . ⊗̂Fp

H1(γn−1(Gji),Fp)

where ⊗̂ is the completed tensor product and the action of Q on

H1(γn−1(Gj1),Fp)⊗̂Fp
. . . ⊗̂Fp

(H1(γn−1(Gji),Fp)

factors through the canonical map hj1,...,ji : Q1×. . .×Qn → Qj1×. . .×Qji . Thus
if hj1,...,ji(Q) has finite index in Qj1×. . .×Qji for any 1 ≤ j1 < j2 < · · · < ji ≤ n
and i ≤ m we get that Hi(L,Fp) is (topologically) finitely generated as a Fp[[Q]]-
module for i ≤ m. Hence H is of type FPm as required.

For the converse suppose that H has type FPm. Then by Lemma 9 and
Proposition 10 hj1,...,ji(Q1× . . .×Qn) has finite index in Qj1 × . . .×Qji , hence
pj1,...,jm(H) has finite index in Gj1 × . . .×Gjm .

Corollary 12. Let each of G1, . . . , Gn be a free non-procyclic pro-p group or
a non-abelian Demushkin group of depth q = ∞ and let H ⊆ D = G1 × G2 ×
. . . × Gn be a closed subdirect product such that H has homological type FPn
and H ∩Gi 6= 1 for every 1 ≤ i ≤ n. Then (H ∩G1)× (H ∩G2)× . . .× (H ∩Gn)
is a subgroup of finite index in H and H has finite index in D.

Proof. By Theorem 11, H has finite index in D, hence H ∩Gi is a subgroup of
finite index in Gi.

Corollary 13. Let each of G1, . . . , Gm be a free pro-p group or a Demushkin
group of depth q =∞, n a positive integer such that n < m and Gi non-abelian
exactly for i ≤ n. Let H ⊆ D = G1×G2× . . .×Gm be a closed subdirect product
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such that H has homological type FPn and H ∩ Gi 6= 1 for every 1 ≤ i ≤ m.
Then (H ∩ G1) × (H ∩ G2) × . . . × (H ∩ Gn) × (H ∩ (Gn+1 × . . . × Gm)) is a
subgroup of finite index in H.

Proof. By the previous corollary H1 = (H ∩G1) × (H ∩G2) × . . . × (H ∩Gn)
has a finite index in H0 = H ∩ (G1 ×G2 × . . .×Gn) and H0 has finite index in
G1 ×G2 × . . .×Gn.

Let
p : D1 = H1 ×Gn+1 × . . .×Gm → Gn+1 × . . .×Gm

be the canonical projection. Then ker(p) = H1 ⊂ H ∩ D1 and so H ∩ D1 =
Ker(p) × p(H ∩ D1) = H1 × (H ∩ (Gn+1 × . . . × Gm)) is a subgroup of finite
index in H.
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