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Abstract. We establish a general criterion for the finite pre-
sentability of subdirect products of groups and use this to char-
acterize finitely presented residually free groups. We prove that,
for all n ∈ N, a residually free group is of type FPn if and only if
it is of type Fn.

New families of subdirect products of free groups are constructed,
including the first examples of finitely presented subgroups that are
neither FP∞ nor of Stallings-Bieri type. The template for these
examples leads to a more constructive characterization of finitely
presented residually free groups up to commensurability.

We show that the class of finitely presented residually free groups
is recursively enumerable and present a reduction of the isomor-
phism problem. A new algorithm is described which, given a finite
presentation of a residually free group, constructs a canonical em-
bedding into a direct product of finitely many limit groups. The
(multiple) conjugacy and membership problems for finitely pre-
sented subgroups of residually free groups are solved.

1. Introduction

This article is part of a project to understand the finitely presented
residually free groups. The prototypes for these groups are the finitely
presented subgroups of finite direct products of free and surface groups,
and in general such a group is a full subdirect product of finitely many
limit groups, i.e. it can be embedded in a finite direct product of
limit groups so that it intersects each factor non-trivially and projects
onto each factor (cf. Theorem A). In our earlier studies [10], [7], [8],
[9], we proved that these full subdirect products have finite index in
the ambient product if they are of type FP∞. We also proved that in
general they virtually contain a term of the lower central series of the
product. These tight restrictions set the finitely presented subdirect
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products of limit groups apart from those that are merely finitely gen-
erated, since the finitely generated subgroups of the direct product of
two free groups are already hopelessly complicated [28]. Nevertheless,
a thorough understanding of the finitely presented subdirect products
of free and limit groups has remained a distant prospect, with only a
few types of examples known.

In this article we pursue such an understanding in a number of ways.
We characterize finitely presented residually free groups among the full
subdirect products of limit groups in terms of their projections to the
direct factors. A revealing family of finitely presented full subdirect
products of free groups is constructed; this gives rise to a more con-
structive characterization of finitely presented residually free groups.
We give algorithms for finding finite presentations when they exist,
for constructing certain canonical embeddings, for enumerating finitely
presented residually free groups and for solving their conjugacy and
membership problems.

Residually free groups provide a context for a rich and powerful in-
terplay among group theory, topology and logic. By definition, a group
G is residually free if, for every 1 6= g ∈ G, there is a homomorphism
φ from G to a free group F such that 1 6= φ(g) in F . In other words
G is isomorphic to a subgroup of an unrestricted direct product of free
groups. In general, one requires infinitely many factors in this direct
product, even if G is finitely generated. For example, the fundamental
group of a closed orientable surface Σ is residually free but it cannot
be embedded in a finite direct product if χ(Σ) < 0, since π1Σ does not
contain Z2 and is not a subgroup of a free group. However, Baum-
slag, Myasnikov and Remeslennikov [3, Corollary 19] proved that one
can force the enveloping product to be finite at the cost of replacing
free groups by ∃-free groups (see also [22, Corollary 2] and [30, Claim
7.5]). In [23] Kharlampovich and Myasnikov describe an algorithm to
find such an embedding, based on the deep work of Makanin [27] and
Razborov [29]. We shall describe a new algorithm that does not de-
pend on [27] and [29]; the embedding that we construct is canonical in
a strong sense (see Theorem A).

By definition, ∃-free groups have the same universal theory as a free
group; they are now more commonly known as limit groups, a term
coined by Sela [30]. They have been much studied in recent years in
connection with Tarski’s problems on the first order logic of free groups
[30], [22]. They have been shown to enjoy a rich geometric structure.
A useful characterisation of limit groups is that they are the finitely
generated groups G that are fully residually free: for every finite subset
A ⊂ G, there is a homomorphism from G to a free group that restricts
to an injection on A.

For the most part, we treat finitely generated residually free groups
S as subdirect products of limit groups. There are at least two obvious
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drawbacks to this approach: the ambient product of limit groups is not
canonically associated to S; and given a direct product of limit groups,
one needs to determine which finitely generated subgroups are finitely
presented.

The first of these drawbacks is overcome by items (1), (3) and (4)
of the following theorem. Item (2) is based on Theorem 4.2 of [9]. We
remind the reader that a subgroup of a direct product of groups is
termed a subdirect product if its projection to each factor is surjective.
A subdirect product is said to be full if it intersects each of the direct
factors non-trivially.

Theorem A. There is an algorithm that, given a finite presentation of
a residually free group S, will construct an embedding ι : S ↪→ ∃Env(S),
so that

(1) ∃Env(S) = Γab × ∃Env0(S) where Γab = H1(S,Z)/(torsion)
and ∃Env0(S) = Γ1×· · ·×Γn is a direct product of non-abelian
limit groups Γi. The intersection of S with the kernel of the
projection ρ : ∃Env(S) → ∃Env0(S) is the centre Z(S) of S,
and ρ(S) is a full subdirect product.

(2) Li := Γi ∩ S contains a term of the lower central series of a
subgroup of finite index in Γi, for i = 1, . . . , n, and therefore
Nilp∃(S) := ∃Env(S)/(L1 × · · · × Ln) is virtually nilpotent.

(3) [Universal Property] For every homomorphism φ : S → D =
Λ1× · · · ×Λm, with φ(S) subdirect and the Λi non-abelian limit

groups, there exists a unique homomorphism φ̂ : ∃Env0(S)→ D

with φ̂ ◦ ρ|S = φ;
(4) [Uniqueness] moreover, if φ : S ↪→ D embeds S as a full sub-

direct product, then φ̂ : ∃Env0(S)→ D is an isomorphism that
respects the direct sum decomposition.

The group ∃Env(S) in Theorem A is called the existential envelope of
S and the associated factor ∃Env0(S) is the reduced existential envelope.
The projection ρ embeds S/Z(S) in ∃Env0(S), and ρ(S) ⊂ ∃Env0(S) is
always a full subdirect product. The subgroup S ⊂ ∃Env(S) is always
a subdirect product but it is full if and only if S has a non-trivial centre.

The second of the drawbacks we identified in the discussion preceding
Theorem A is resolved by item (4) of the following theorem. In order
to state this theorem concisely we introduce the following temporary
definition: an embedding S ↪→ Γ0 × · · · × Γn of a residually free group
S as a full subdirect product of limit groups is said to be neat if Γ0

is abelian (possibly trivial), S ∩ Γ0 is of finite index in Γ0, and Γi is
non-abelian for i = 1, . . . , n.

Theorem B. Let S be a finitely generated residually free group. Then
the following conditions are equivalent:

(1) S is finitely presentable;
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(2) S is of type FP2(Q);
(3) dimH2(S0; Q) <∞ for all subgroups S0 ⊂ S of finite index;
(4) there exists a neat embedding S ↪→ Γ0× · · · ×Γn into a product

of limit groups such that the image of S under the projection to
Γi × Γj has finite index for 1 ≤ i < j ≤ n;

(5) for every neat embedding S ↪→ Γ0 × · · · × Γn into a product of
limit groups, the image of S under the projection to Γi×Γj has
finite index for 1 ≤ i < j ≤ n.

Corollary C. For all n ∈ N, a residually free group S is of type Fn if
and only if it is of type FPn(Q).

Subsequent to our work, D. Kochloukova [21] has obtained results
concerning the question of which subdirect products of limit groups are
FPk for 2 < k < n.

It follows from Theorem B that any subgroup T ⊂ ∃Env(S) contain-
ing S is again finitely presented. More generally we prove:

Theorem D. Let n ≥ 2 be an integer, let S ⊂ D := Γ1× · · · ×Γk be a
full subdirect product of limit groups, and let T ⊂ D be a subgroup that
contains S. If S is of type FPn(Q) then so is T .

The proof of Theorem B relies on our earlier work concerning the
finiteness properties of subgroups of direct products of limit groups [9]
and the following new criterion for the finite presentability of subdirect
products.

Theorem E. Let S ⊂ G1 × · · · ×Gn be a subgroup of a direct product
of finitely presented groups. If for all i, j ∈ {1, . . . , n}, the projection
pij(S) ⊂ Gi ×Gj has finite index, then S is finitely presented.

An essential ingredient in the proof of this result is the following
asymmetric version of the 1-2-3 Theorem of [2].

Theorem F (Asymmetric 1-2-3 Theorem). Let f1 : Γ1 → Q and f2 :
Γ2 → Q be surjective group homomorphisms. Suppose that Γ1 and Γ2

are finitely presented, that Q is of type F3, and that at least one of
ker(f1) and ker(f2) is finitely generated. Then the fibre-product of f1

and f2,
P = {(g, h) | f1(g) = f2(h)} ⊂ Γ1 × Γ2,

is finitely presented.

In Theorem 3.4 and Theorem 2.2 we shall describe effective versions
of Theorems E and F that yield an explicit finite presentation for S.
In the final section we shall use these algorithmic versions to prove:

Theorem G. The class of finitely presented, residually free groups is
recursively enumerable. More explicitly, there exists a Turing machine
that generates a list of finite group presentations so that each of the
groups presented is residually free and every finitely presented residually
free group is isomorphic to at least one of the groups presented.
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In Section 4 we turn our attention to the construction of new families
of finitely presented residually free groups. We construct the first ex-
amples of finitely presented subgroups of direct products of free groups
that are neither FP∞(Q) nor of Stallings-Bieri type, thus answering a
question in [10]. Subdirect products of free and surface groups demand
particular attention because, in addition to their historical interest, the
work of Delzant and Gromov [16] shows that such subgroups play an
important role in the problem of determining which finitely presented
groups arise as the fundamental groups of compact Kähler manifolds.

We use the standard notation γn(G) to denote the n-th term of the
lower central series of a group.

Theorem H. If c and n are positive integers with n ≥ c + 2, and
D = F1 × · · · × Fn is a direct product of free groups of rank 2, then
there exists a finitely presented subgroup S ⊂ D with S ∩Fi = γc+1(Fi)
for i = 1, . . . , n.

Nilp∃(S) was defined in Theorem A(2).

Corollary I. For all positive integers c and n ≥ c + 2, there exists a
finitely presented residually free group S for which Nilp∃(S) is a direct
product of n copies of the 2-generator free nilpotent group of class c.

The proof that the group S in Theorem H is finitely presented relies
on our earlier structural results. Our proof of the equality S ∩ Fi =
γc+1(Fi) exploits the Magnus embedding of the free group of rank 2
into the group of units of Q[[α, β]], the algebra of power series in two
non-commuting variables with rational coefficients.

Theorem B describes the finitely presented residually free groups. A
description of a quite different nature is given in Theorem 5.5: using
a template inspired by the examples in Section 4 we prove that ev-
ery finitely presented residually free group is commensurable with a
particular type of subdirect product of limit groups.

In Section 7 we apply Theorem A to elucidate the algorithmic struc-
ture of finitely presented residually free groups. The restriction to
finitely presented groups is essential, since decision problems for arbi-
trary finitely generated residually free groups are hopelessly difficult.
For example, there are finitely generated subgroups of a direct product
of two free groups for which the conjugacy problem and membership
problem are unsolvable; and the isomorphism problem is unsolvable
amongst such groups [28].

The following statement includes the statement that the conjugacy
problem is solvable in every finitely presented residually free group.

Theorem J. Let S be a finitely presented residually free group. There
exists an algorithm that, given an integer n and two n-tuples of words
in the generators of S, say (u1, . . . , un) and (v1, . . . , vn), will determine
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whether or not there exists an element s ∈ S such that suis
−1 = vi in

S for i = 1, . . . , n.

Theorem K. If S is a finitely presented residually free group and H ⊂
S is a finitely presented subgroup, then there is an algorithm that given
an arbitrary word w in the generators of S can determine whether or
not w defines an element of H.

Since the completion of our work, alternative approaches to the con-
jugacy and membership problems have been developed in [12] and [14].
In the final section of this paper we make a few remarks about the iso-
morphism problem for finitely presented residually free groups, taking
account of the canonical embeddings S ↪→ ∃Env(S).

This paper is organised as follows. Our first goal is to prove an
effective version of the Asymmetric 1-2-3 Theorem; this is achieved
in Section 2. In Section 3 we establish Theorem E. In Section 4 we
construct the groups described in Theorem H. In Section 5 we establish
the two characterisations of finitely presented residually free groups
promised earlier: we prove Theorem B and Theorem 5.5. Section 6 is
devoted to the proof of Theorem A and other aspects of the canonical
embedding S ↪→ ∃Env(S). Finally, in Section 7, we turn our attention
to decidability and enumeration problems, proving Theorems G, J and
K.

We thank G. Baumslag, W. Dison, D. Kochloukova, A. Myasnikov,
Z. Sela, H. Wilton and, most particularly, M. Vaughan-Lee for helpful
comments and suggestions relating to this work.

2. The Asymmetric 1-2-3 Theorem

Our proofs of Theorems E and B rely crucially on the following
asymmetric version of the 1-2-3 Theorem from [2]. The adaptation
from [2] is straightforward and has been written out in complete detail
by W. Dison in his doctoral thesis [17]. We recall the main points of
the proof here, largely because the reader will need them to hand in
order to follow the proof of the effective version of the theorem that is
proved in Subsection 2.1. The basic Asymmetric 1-2-3 Theorem states
that a certain type of fibre product is finitely presented, whereas the
effective version provides an algorithm that, given natural input data,
constructs a finite presentation for the fibre product. This enhanced
version of the theorem will play a crucial role in our proof that the class
of finitely presented residually free groups is recursively enumerable.

We remind the reader that a group G is said to be of type F3 if it
there is a K(G, 1) with finitely many cells in the 3-skeleton.

Theorem 2.1 (= Theorem F). Let f1 : Γ1 → Q and f2 : Γ2 → Q be
surjective group homomorphisms. Suppose that Γ1 and Γ2 are finitely
presented, that Q is of type F3, and that at least one of ker(f1) and
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ker(f2) is finitely generated. Then the fibre-product of f1 and f2,

P = {(g, h) | f1(g) = f2(h)} ⊂ Γ1 × Γ2,

is finitely presented.

Proof. Without loss of generality, we may assume that N := ker(f1) is
finitely generated.

As in [2, §1.4], we start with a finite presentation 〈X|R〉 for Q and
from this construct a finite presentation

P1 ≡ 〈A,X|S1(A,X), S2(A,X), S3(A)〉
for Γ1 such that

(1) A generates N ;
(2) S1 consists of relators xεax−εVx,a,ε(A), one for each x ∈ X,

a ∈ A and ε = ±1, where Vx,a,ε(A) is a word in the letters A±1;
(3) S2 consists of relators r(X)Ur(A), one for each r ∈ R, where

Ur(A) is a word in the letters A±1;
(4) S3 is a finite set of words in the letters A±1.

We do not assume that ker(f2) is finitely generated. Nevertheless,
we can also choose a finite presentation for Γ2 of the form P2 ≡
〈B,X|T2(B,X), T3(B,X)〉, in which:

(1) B ⊂ ker(f2);
(2) T2 consists of a word r(X)Wr(B

∗) for each r ∈ R, where B∗

denotes the set of formal conjugates bw(X) of the letters B±1 by
words in X±1 and Wr(B

∗) is a word in these conjugates;
(3) T3 is a finite set of words in the symbols B∗.

Now since Q = 〈X|R〉 is of type F3, there is a finite set of ZQ-module
generators σ for the second homotopy group of this presentation, each
of which can be expressed as an identity

σ :=
m∏
j=1

w−1
j r

εj

j wj =F (X) 1.

Following [2, §1.5] we translate σ into a relation zσ(A) among the gen-
erators A of N as follows: first replace each rj by the corresponding
relator rj(X).Urj (A) from S2 above to get a word

ζσ =
m∏
j=1

wj(X)−1
(
rj(X).Urj (A)

)εj wj(X);

then apply a sequence of relations (from S1 above) of the form

xεax−ε = Vx,a,ε(A)−1

to cancel all the x-letters from ζσ to leave a word zσ involving only
letters from A±1.

Let Z = Z(A) be the finite set of words zσ(A) in the letters A±1

arising from our fixed finite set of π2-generators σ. The crucial claim
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is that the fibre product P of f1 and f2 is isomorphic to the quotient
of the free group F on A ∪ B ∪ X modulo the following finite set of
defining relators. (Here we use functional notation for words: given
a set of words Σ(Y ) in symbols Y ±1 and a set of symbols y in 1-1
correspondence with Y , we write Σ(y) for the set of words obtained
from Σ(Y ) by replacing each y ∈ Y with the corresponding symbol
from y.)

I) S1(A,X ) ∪ S3(A) ∪ Z(A) ∪ T3(B,X );
II) {r(X).Ur(A).Wr(B

∗) | r ∈ R};
III) {[a, b] | a ∈ A, b ∈ B};
IV) {[a, r(X )Ur(A)] | a ∈ A, r ∈ R}.

We must argue that this really is a presentation of P . We map F to
P ⊂ Γ1 × Γ2 by a homomorphism θ defined as follows:

(1) θ(a) = (a, 1) for a ∈ A;
(2) θ(b) = (1, b) for b ∈ B;
(3) θ(x) = (x, x) for x ∈ X .

Let G be the quotient of F by the given relations. Since θ maps each
of these relations to (1, 1), it induces a homomorphism θ from G to P .
It is easy to see that θ is surjective, so it only remains to prove that
ker(θ) = {1}.

Suppose W (A,B,X) ∈ F belongs to ker(θ). Killing the generators
A in G gives a presentation for Γ2, and the associated map G → Γ2

factors through θ, so W (1, B,X) = 1 in G/〈〈A〉〉. It follows that having
modified W by applying a finite sequence of the relations of G, we can
assume that it is a finite product of conjugates of elements of A±1.

Now the relators S1(A,X ) and (2) combine to show that each element
of A commutes in G with each element of B∗. Thus if au(B,X) is a
conjugate of a ∈ A by a word in (B ∪X)±1, we may apply the relators
to replace it by au(1,X), a conjugate of a by a word in X±1. But then
the relators S1 may be applied once more to replace au(1,X) by a word
in A±1.

At this stage we have succeeded in using the given defining rela-
tors of G to replace the initial word W (A,B,X) by a word W0(A).
Now W0(A) = 1 in N , and [2, Theorem 1.2] tells us that the equality
W0(A) = 1 in N is a consequence of the defining relators S1(A,X),
S3(A), Z(A) and (2). Thus W0(A) = 1 in G. Hence ker(θ) = 1 and θ
is an isomorphism from the finitely presented group G onto the fibre
product of f1 and f2, as required. �

2.1. An effective version of the Asymmetric 1-2-3 Theorem.
Given a finite presentation Q ≡ 〈X | R〉 for a group Q, one can
define the second homotopy group of π2Q to be π2 of the standard
2-complex K of the presentation, regarded as a module over ZQ via
the identification Q = π1K. But in the present context it is better
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to regard elements of π2Q as equivalence classes of identity sequences
[(w1, r1), . . . , (wm, rm)], where the wi are elements of the free group
F (X), the ri ∈ R±1, and where

∏m
i=1w

−1
i riwi is equal to the empty

word in F (X); equivalence is defined by Peiffer moves, and the action
of Q is induced by the obvious conjugation action of F (X); see [31].

Theorem 2.2. There exists a Turing machine that, given the following
data describing group homomorphisms fi : Γi → Q (i = 1, 2) will
output a finite presentation of the fibre product of these maps provided
that both the fi are surjective and at least one of the kernels ker(fi) is
finitely generated. (If either of these conditions fails, the machine will
not halt.)

Input Data:

(1) A finite presentation Q ≡ 〈X | R〉 for Q.
(2) A finite presentation 〈a(i) | r(i)〉 for Γi (i = 1, 2).
(3) ∀a ∈ ai, a word a ∈ F (X) such that a = fi(a) in Q.
(4) A finite set of identity sequences that generate π2Q as a ZQ-

module.

Proof. The proof of Theorem 2.1 above describes a simple, explicit
process for constructing a finite presentation of P from presentations
P1,P2 of a special form and identities σ (in the notation of the proof of
Theorem 2.1). We shall now describe an effective process that, given
the input data, will do the following in order:

(i) verify that the fi are onto, then proceed to (ii) (but fail to halt
if they are not onto);

(ii) construct P1 if ker f1 is finitely generated, output it, then pro-
ceed to (iii);

(iii) construct P2 and output it.

If the process reaches stage (iii), it must eventually halt.
Once we have this process in hand, we apply it simultaneously to

the given input data and to the data with the indices 1, 2 permuted;
one of these processes will halt if the fi are onto and one of the kernels
is finitely generated. The output data is then translated into a presen-
tation of P by writing the relations (I) to (IV) of the preceding proof.
The Turing machine implementing this parallel process and subsequent
translation is the one whose existence is asserted in the theorem.

It remains to explain how steps (i) to (iii) are achieved.

(i): Suppose X = {x1, . . . , xl}. To verify that fi is onto, the process
enumerates the words w in the free monoid on a(i) in order of increasing
length and, proceeding diagonally through this enumeration and that
of all products Π in the free group F (X) of conjugates of the relations
R of Q, the process searches for an equality x1w = Π in F (X), where
w is the word obtained from w by replacing each a ∈ a(i) by a. Once
such an equality is found, the process is repeated with x2 in place of
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x1. When an equality is found for x2, the process proceeds for x3 and
so on until an equality has been found for each of x1, . . . , xl, at which
point process (i) halts.

(ii): This stage of the programme implements a countable number of
sub-programmes in a diagonal manner. The m’th involves a fixed set
Am of cardinality m. The sub-programme itself implements a countable
number of sub-programmes, drawing words Vx,a,ε and Ur from a length-
increasing enumeration of the free monoid on X±1 and working with
presentations P of the form given as P1 in the proof of Theorem 2.1
(condition (1) concerning Am being ignored). Let Γ(P) be the group
defined by P . The surjection F (X ∪Am)→ Q defined by π(x) = x for
x ∈ X and π(a) = 1 for a ∈ Am induces a surjection π : Γ(P)→ Q.

By enumerating all Tietze transformations, the sub-programme searches
for an isomorphism q : Γ1 → Γ(P) such that π ◦ q = f1 (see remark
2.3). When P is found, the process halts and outputs P .

(iii): This is identical to stage two except that one considers presen-
tations with the form of P2 instead of those with the form of P1. �

Remark 2.3. In the above proof we made use of an instance of the
following very general observation: if one is given an arbitrary finite
presentation P of a group Γ and one knows that Γ has a “special” pre-
sentation drawn from some recursively enumerable class {C1, C2, . . . },
one can find a special presentation of Γ by proceeding as follows: enu-
merate the finite presentations Pn obtained from P by finite sequences
of Tietze moves and proceed searching the finite diagonals through the
rectangular array (Pn, Cm) looking for a coincidence.

3. Subdirect products

Throughout this section we consider subdirect products of arbitrary
finitely presentable groups. In later sections we restrict attention to
the case where the direct factors are limit groups.

Given a direct product D := G1 × · · · × Gn, we shall consistently
write pi and pij for the projection homomorphisms pi : D → Gi and
pij : D → Gi ×Gj (i, j = 1, . . . , n)

Theorem 3.1 (= Theorem E). Let S ⊂ G1 × · · · × Gn be a sub-
group of a direct product of finitely presented groups. If for all i, j ∈
{1, . . . , n}, i 6= j, the projection pij(S) ⊂ Gi×Gj has finite index, then
S is finitely presentable.

We will deduce this theorem from the Asymmetric 1-2-3 Theorem
by combining some well-known facts about virtually nilpotent groups
with the following proposition, which generalises similar results in [10]
and [9].
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Proposition 3.2. Let G1, . . . , Gn be groups and let S ⊂ G1× · · ·×Gn

be a subgroup. If pij(S) ⊂ Gi × Gj is of finite index for all i, j ∈
{1, . . . , n}, i 6= j, then

(1) there exist finite-index subgroups G0
i ⊂ Gi such that γn−1(G0

i ) ⊂
S.

If, in addition, the groups Gi are all finitely generated, then

(2) Li := S ∩Gi is finitely generated as a normal subgroup of S,
(3) Ni := S ∩ ker(pi) is finitely generated, and
(4) S is itself finitely generated.

Proof. The conditions imply that pi(S) is a finite index subgroup of Gi,
and by passing to subgroups of finite index we may assume without loss
that S is subdirect.

Let

G0
1 = {g ∈ G1 | ∀j 6= 1∃(g, ∗, . . . , ∗, 1, ∗ . . . ) ∈ Nj} =

n⋂
j=2

(p1j(S) ∩G1)

and define G0
i similarly. As pij(S) ⊂ Gi ×Gj is of finite index, G0

i has
finite index in Gi for i = 1, . . . , n.

For notational convenience we focus on i = 1 and explain why
γn−1(G0

1) ⊂ S. The key point to observe is that for all x1, . . . , xn−1 ∈ G0
1

the commutator ([x1, x2, . . . , xn−1], 1, . . . , 1) can be expressed as the
commutator of elements from the subgroups Nj ⊂ S; explicitly it is

[ (x1, 1, ∗, . . . , ∗), (x2, ∗, 1, ∗, . . . , ∗), . . . , (xn−1, ∗, . . . , ∗, 1) ].

This proves the first assertion.
For (2), note that since S is subdirect, S∩Gi is normal in Gi and the

normal closure in Gi of any set T ⊂ S ∩ Gi is the same as its normal
closure in S. Since Gi is finitely generated, Gi/(S ∩ Gi) is a finitely
generated virtually nilpotent group; hence it is finitely presented and
S ∩Gi is the normal closure in Gi (hence S) of a finite subset.

Towards proving (3), note that the image of N1 = S ∩ ker(p1) in Gi

under the projection pi has finite index for 2 ≤ i ≤ n, since p1i(S) has
finite index in G1 × Gi and N1 is the kernel of the restriction to S of
p1 = p1 ◦ p1i. In particular pi(N1) is finitely generated.

Note also that Li = S ∩Gi is the normal closure of a finite subset of
pi(N1) by (2).

Now let L := L2× · · · ×Ln. Then N1/L is a subgroup of the finitely
generated virtually nilpotent group

G2 × · · · ×Gn

L
∼=
G2

L2

× · · · × Gn

Ln
,

and hence is also finitely generated (and virtually nilpotent).
Putting all these facts together, we see that we can choose a finite

subset X of N1 such that:
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• pi(X) generates pi(N1) for each i = 2, . . . , n;
• X ∩ Li generates Li as a normal subgroup of pi(N1), for each
i = 2, . . . , n;
• {xL : x ∈ X} generates N1/L.

These three properties ensure that X generates N1, and the proof of
(3) is complete.

We can express S as an extension of N1 by G1 which are both finitely
generated (using (3)), and (4) follows immediately. �

Remark 3.3. We shall use this lemma in tandem with the fact that
finitely generated virtually nilpotent groups are F∞, i.e. have classi-
fying spaces with finitely many cells in each dimension. Indeed this
is true of virtually polycyclic groups P , because such a group has a
torsion-free subgroup of finite index that is poly-Z, and hence is the
fundamental group of a closed aspherical manifold. If B has type F∞
(e.g. a finite group) and A has type F∞ (e.g. the fundamental group of
an aspherical manifold), then any extension of A by B is also of type
F∞ (see [18] Theorem 7.1.10).

3.1. Proof of Theorem E. The hypothesis on pij(S) implies that the
image of S in each factor Gi is of finite index. Replacing the Gi and S
with subgroups of finite index does not alter their finiteness properties.
Thus we may assume that S is a subdirect product. Let Li = Gi ∩ S
and note that Li is normal in both S and Gi. Proposition 3.2 tells us
that Qi := Gi/Li is virtually nilpotent; in particular it is of type F3

(see remark 3.3).
Assuming that S is a subdirect product, we proceed by induction on

n. The base case, n = 2, is trivial.
Let q : G1 × · · · × Gn → G1 × · · · × Gn−1 be the projection with

kernel Gn and let T = q(S). By the inductive hypothesis, T is finitely
presented. We may regard S as a subdirect product of T ×Gn. Equiv-
alently, writing K = T ∩ S and noting that

T

K
∼=

S

K × Ln
∼=
Gn

Ln
= Qn,

we see that S is the fibre-product associated to the short exact se-
quences 1→ K → T → Qn → 1 and 1→ Ln → Gn → Qn → 1. Thus,
by the Asymmetric 1-2-3 Theorem, our induction is complete because
according to Proposition 3.2, K is finitely generated. �

3.2. The effective version. We next prove an effective version of
Theorem E, which will play a key part in proving that the class of
finitely presentable residually free groups is recursively enumerable.

Theorem 3.4. There exists a Turing machine that, given a finite col-
lection G1, . . . , Gn of finitely presentable groups (each given by an ex-
plicit finite presentation) and a finite subset Y ⊂ G1 × · · · ×Gn (given
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as a set of n-tuples of words in the generators of the Gi) such that
each projection pij(Y ) generates a finite-index subgroup of Gi × Gj

(1 ≤ i < j ≤ n), will output a finite presentation for S := 〈Y 〉.

Proof. With the effective Asymmetric 1-2-3 Theorem (Theorem 2.2)
in hand, we follow the proof of Theorem E. As in Theorem E we
first replace each Gi by the finite-index subgroup pi(S) to get to a
situation where S is subdirect. Here we use the Todd-Coxeter and
Reidemeister-Schreier processes to replace the given presentations of
the Gi by presentations of the appropriate finite-index subgroups. By
using Tietze transformations we may take pi(Y ) to be the generators
of this presentation. Thus we express the revised Gi as quotients of the
free group on Y .

We argue by induction on n. The initial cases n = 1, 2 are easily han-
dled by the Todd-Coxeter and Reidemeister-Schreier processes, since
then S has finite index in the direct product. So we may assume that
n ≥ 3.

By Theorem 2.2 it is sufficient to find finite presentations for

(1) T = q(S), where q is the natural projection from G1× · · · ×Gn

to G1 × · · · ×Gn−1,
(2) Gn, and
(3) Q = Gn/(Gn ∩ S),

together with

(4) explicit epimorphisms T → Q and Gn → Q, and
(5) a finite set of generators for π2 of the presentation for Q, as a

ZQ-module.

A finite presentation for Gn is part of the input.

We may assume inductively that we have found a finite presen-
tation for T , with generators q(Y ). We write this presentation as
〈Y | r1(Y ), . . . , rm(Y )〉.

To obtain a finite presentation for Q, we proceed as follows. The
words rj(pn(Y )) normally generate Gn ∩ S. Adding these words as
relations to the existing presentation of Gn gives a finite presentation
of Q, together with the natural quotient map Gn → Q.

The epimorphism T → Q is induced by the identity map on Y .

We would now be done if we could compute a finite set of π2-
generators for our chosen finite presentation P of the virtually nilpotent
group Q. But it is more convenient to proceed in a slightly different
manner, modifying P .

First, we search among finite-index normal subgroups Q′ of Q for an
isomorphism Q′ → P , for some group P given by a poly-Z presenta-
tion P ′. The latter presentation defines an explicit construction for a
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finite K(P, 1)-complex X, and in particular a finite set of generators of
π2(X(2)) (the attaching maps of the 3-cells).

We next replace our initial presentation P for Q by a new presenta-
tion Q that contains P ′ as a sub-presentation. Indeed, we know that
such presentations exist, so we can find one, together with an explicit
isomorphism that extends the given isomorphism P → Q′, by a näıve
search procedure (see Remark 2.3).

Let Y denote the 2-dimensional complex model of the presentation

Q, Ŷ the regular cover of Y corresponding to the normal subgroup

P = Q′, and Z the preimage of X(2) ⊂ Y in Ŷ . Then Z consists of one

copy of X(2) at each vertex of Ŷ ; these are indexed by the elements of
the finite quotient group H = Q/Q′.

We then have an exact homotopy sequence

· · · → ZQ⊗ZQ′ π2(X(2))→ π2(Ŷ )→ π2(Ŷ , Z)→ 0

(since the map P → Q is injective by hypothesis), together with a finite

set B of generators for π2(X(2)) as a ZQ′-module. But π2(Ŷ , Z) ∼=
H2(Ŷ /Z), since the quotient complex Ŷ /Z is simply connected. Hence

π2(Y ) = π2(Ŷ ) is generated as a ZQ-module by B together with any
finite set C that maps onto a generating set for the finitely generated

abelian group H2(Ŷ /Z). Such a set C can be found by a näıve search
over finite sets of identity sequences over Q. �

4. Novel Examples

¿From [9] (or [10] in the case of surface groups) we know that a
finitely presented full subdirect product S of n limit groups Γi must
virtually contain the term γn−1 of the lower central series of the product.
So the quotient groups Γi/(S ∩ Γi) are virtually nilpotent of class at
most n − 2. In particular for n = 3 the quotients Γi/(S ∩ Γi) are
virtually abelian.

A question left unresolved in [10] is whether a finitely presented sub-
direct product S of n free groups Φi can have Φi/(S ∩ Φi) nilpotent
strictly of class 2 or more (necessarily n ≥ 4 for this to happen). The-
orem 4.2 below settles this question and shows that the bounds on the
nilpotency class given in [9] and [10] are optimal.

4.1. The groups S(E, c). Let F = 〈a, b〉 be the free group of rank 2,
and let Φ = F Z denote the unrestricted direct product of a countably
infinite collection of copies of F , thought of as the set of functions
f : Z→ F endowed with pointwise multiplication.

Let Γ = 〈w, x, y, z〉 be a free group of rank 4, and define a homo-
morphism φ : Γ → Φ by φ(w)(n) = a, φ(x)(n) = b, φ(y)(n) = an,
φ(z)(n) = bn for all n ∈ Z.
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Given a finite subset E ⊂ Z, we may regard the direct product of
|E| copies of F as the set FE of functions E → F . We then obtain a
projection pE : Φ→ FE by restriction: pE(f) = f |E : E → F .

Notice that when E = {n} is a singleton pE ◦ φ is surjective. It will
be convenient to write Φn for F {n}, pn for the projection p{n} : Φ→ Φn,
and an, bn for the copy of a, b respectively in Φn. The surjectivity of
pn ◦ φ means that, for any finite subset E ⊂ Z, the image of pE ◦ φ is
a finitely generated subdirect product of the free groups Φn (n ∈ E).

This subdirect product is not in general finitely presented.
Now let c be a positive integer. We may choose a finite set R =

R(a, b) of normal generators for the c’th term γc(F ) of the lower central
series of F . We then define S(E, c) to be the subgroup of FE that is
generated by (pE ◦φ)(Γ) together with the sets R(an, bn) ⊂ Φn for each
n ∈ E.

As a concrete example we note that S({1, 2, 3, 4}, 3) is the subgroup
of Φ1 ×Φ2 ×Φ3 ×Φ4 generated by the following 12 elements: the four
images of the generators of Γ

(a1, a2, a3, a4) , (b1, b2, b3, b4)

(a1, a
2
2, a

3
3, a

4
4) , (b1, b

2
2, b

3
3, b

4
4)

together with the eight elements

([[a1, b1], a1], 1, 1, 1) , ([[a1, b1], b1], 1, 1, 1) , (1, [[a2, b2], a2], 1, 1) , . . .

. . . , (1, 1, 1, [[a4, b4], a4]) , (1, 1, 1, [[a4, b4], b4])

which are normal generators for the subgroups γ3(Φi) for 1 ≤ i ≤ 4.

Proposition 4.1. The groups S(E, c) have the following properties.

(1) S(E, c) contains γc(F
E).

(2) S(E, c) is finitely presentable.
(3) If E ′ = E + t = {e+ t; e ∈ E} is a translate of E in Z, then

S(−E, c) ∼= S(E, c) ∼= S(E ′, c).

(4) If E ⊂ E ′, then the projection FE′ → FE induces an epimor-
phism S(E ′, c)→ S(E, c).

Proof.
(1) Since R(an, bn) ⊂ S(E, c) ∩ Φn by construction, and since pn ◦ φ

is surjective for all n ∈ E, it follows that S(E, c) ⊃ γc(Φn) for each
n ∈ E, and hence S(E, c) ⊃ γc(F

E).
(2) Clearly S(E, c) is finitely generated. For any 2-element subset

T = {m,n} of E, the image of the projection of S(E, c) to F T =
Φm × Φn is precisely S(T, c). Since S(T, c) contains the elements
pT (φ(w)) = (am, an), pT (φ(x)) = (bm, bn), pT (φ(yw−m)) = (1, an−mn )
and pT (φ(zx−m)) = (1, bn−mn ), together with γc(Φm × Φn), we see that
the quotient of each of the direct factors Φm

∼= F ∼= Φn by its intersec-
tion with S(T, c) is a nilpotent group of class at most c, generated by
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two elements of finite order, and hence is finite. Thus S(T, c) has finite
index in F T . In other words, the projection of the subdirect product
S(E, c) < FE to each product of two factors F T has finite index. Hence
by Theorem E, S(E, c) is finitely presentable.

(3) It is clear that S(−E, c) ∼= S(E, c) via the isomorphism FE →
F−E defined by an 7→ a−n, bn 7→ b−n.

To show that S(E, c) ∼= S(E ′, c), it is clearly enough to consider the
case t = 1. The isomorphism θ : FE → FE′

defined by an 7→ an+1,
bn 7→ bn+1 is induced by the shift automorphism θ : Φ→ Φ defined by
θ(f)(k) := f(k − 1), in the sense that pE′ ◦ θ = θ ◦ pE.

Similarly, θ commutes with the automorphism θ̂ of Γ defined by

w 7→ w, x 7→ x, y 7→ yw−1, z 7→ zx−1, in the sense that θ ◦ φ = φ ◦ θ̂.
It follows immediately from the definitions that θ maps S(E, c) onto
S(E ′, c)

(4) This is immediate from the definitions. �

We can now state and prove the main result of this section. We thank
Mike Vaughan-Lee for several helpful suggestions concerning this proof.

Theorem 4.2 (= Theorem H). For any positive integer c, and any
finite subset E ⊂ Z of cardinality at least c+ 1, the group S(E, c) is a
finitely presentable subdirect product of the non-abelian free groups Φn

(n ∈ E) and S(E, c) ∩ Φn = γc(Φn) for each n ∈ E.

Proof. By construction, S(E, c) is a subdirect product of the Φn for n ∈
E, and by Proposition 4.1 (2) it is finitely presentable. By Proposition
4.1 (1) we have

S(E, c) ∩ Φn ⊃ γc(Φn)

for each n ∈ E, so it only remains to prove the reverse inclusion.
LetA = Q[[α, β]] be the algebra of power series in two non-commuting

variables α, β with rational coefficients, and for each n let ηn : Φn →
U(A) be the Magnus embedding of Φn into the group of units U(A)
of A, defined by ηn(an) = 1 + α, ηn(bn) = 1 + β. By Magnus’ The-
orem [25] (or [26, Chapter 5]), η−1

n (1 + J c) = γc(Φn). Here J is the
ideal generated by the elements with 0 constant term and J c is its c-th
power.

Now define η : Γ → U(Q[t] ⊗Q A) by η(w) = 1 + α, η(x) = 1 + β,
η(y) = (1 +α)t, η(z) = (1 + β)t, where for example (1 +α)t means the
power series

(1 + α)t =
∞∑
k=0

(
t
k

)
αk =

∞∑
k=0

t(t− 1) · · · (t− k + 1)

k!
αk.

Note that ηn ◦ φn = ψn ◦ η, where ψn : Q[t]⊗Q A→ A is defined by
f(t)⊗ a 7→ f(n)a and where φn = pn ◦ φ.
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Note also that, for any g ∈ Γ, η(g) has the form

η(g) =
∑
W∈Ω

pW (t) ·W (α, β),

where Ω is the free monoid on {α, β} and pW (t) ∈ Q[t] has degree at
most equal to the length of W . Hence, for each n ∈ Z, we have

ηn(φn(g)) = ψn(η(g)) =
∑
W∈Ω

pW (n) ·W (α, β).

Suppose now that E ⊂ Z is a finite set of integers of cardinality at
least c+ 1, and that g ∈ Γ such that pE(φ(g)) ∈ S(E, c)∩Φn for some
n ∈ E. Then, for each m ∈ E r {n}, we have

ψm(η(g)) = ηm(φm(g)) = ηm(1) = 1.

It follows that, in the expression η(g) =
∑

W∈Ω pW (t) ·W (α, β) for
η(g), the c elements of E r {n} are roots of all the polynomials pW (t).
In particular, for words W of length less than c, the polynomials pW are
identically zero. Hence ψm(η(g)) ∈ 1 + J c for all m ∈ Z, in particular
for m = n. Hence φn(g) ∈ η−1

n (1 + J c) = γc(Φn).
Thus

S(E, c) ∩ Φn ⊂ γc(Φn),

completing the proof that

S(E, c) ∩ Φn = γc(Φn).

�

4.2. Sample calculations. We use the explicit form of the map η
from the proof of Theorem 4.2 to make some calculations that illumi-
nate the preceding proof.

Remark 4.3. Suppose that U, V ∈ Γ and α ∈ Jk, β ∈ J ` are such
that η(U) = 1 + α mod Jk+1, η(V ) = 1 + β mod J `+1. Then η(UV )−
η(V U) = αβ − βα mod Jk+`+1, while η(U−1V −1) = 1 mod J2, so

η([U, V ])− 1 = η(U−1V −1)(η(UV )− η(V U)) = αβ − βα mod Jk+`+1 .

Example 4.4. For each integer k, we calculate that

η(zx−k) = 1 + (t− k)β mod J2.

Also
η(Y ) = 1 + tα mod J2.

Repeatedly applying Remark 4.3, we see that

η([y, zx−1, zx−2, . . . , zx−m]) = 1+t(t−1) · · · (t−m)Vm(α, β) mod Jm+2,

where

Vm :=
m∑
k=1

(
m

k

)
βkαβm−k
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is a non-trivial Z-linear combination of homogeneous monomials of
degree m+ 1.

Notice that the coefficient of Vm(α, β) is a polynomial of degree m+
1 in t with roots 0, 1, . . . ,m. In particular this gives an example of
an element in S({0, . . . ,m + 1},m + 2) ∩ γm+1(Φm+1) which is not in
γm+2(Φm+1).

Example 4.5. As another application of Remark 4.3, we see induc-
tively that, for any basic commutator C of weight c in the generators
of Γ,

η(C) ∈ Z[t][[α, β]] + J c+1,

and hence
η(γc(Γ)) ⊂ Z[t][[α, β]] + J c+1.

On the other hand, if we put U = [w, z][x, y] ∈ γ2(Γ), then

η(U) = 1 +

(
t

2

)
(αβ2 + β2α + βα2 + α2β − 2αβα− 2βαβ) mod J4.

Thus φ(U) is an element of γ3(S(E, c)) for any E, c. On the other
hand, since

(
t
2

)
/∈ Z[t], η(U) /∈ η(γ3(Γ)), so for sufficiently large E, c

the element φ(U) ∈ γ3(S(E, c)) does not belong to φ(γ3(Γ)).

5. Characterizations

In this section we discuss the structure of finitely presentable residu-
ally free groups, and prove some results concerning their classification.

5.1. Subdirect products and homological finiteness properties.
We remind the reader of the shorthand we introduced in order to state
Theorem B concisely: an embedding S ↪→ Γ0× · · · ×Γn of a residually
free group S as a full subdirect product of limit groups is said to be
neat if Γ0 is abelian, S∩Γ0 is of finite index in Γ0, and Γi is non-abelian
for i = 1, . . . , n.

Theorem 5.1 (=Theorem B). Let S be a finitely generated residually
free group. Then the following conditions are equivalent:

(1) S is finitely presentable;
(2) S is of type FP2(Q);
(3) dimH2(S0; Q) <∞ for all subgroups S0 ⊂ S of finite index;
(4) there exists a neat embedding S ↪→ Γ0 × · · · × Γn such that the

image of S under the projection to Γi × Γj has finite index for
1 ≤ i < j ≤ n;

(5) for every neat embedding S ↪→ Γ0 × · · · × Γn, the image of S
under the projection to Γi×Γj has finite index for 1 ≤ i < j ≤ n.

Proof. The implications (1) implies (2) implies (3) are clear. Theorem
E shows that (4) implies (1).

In order to establish the remaining implications, we first argue that
every finitely generated residually free group has a neat embedding.
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The embedding theorem from [3] tells us that S embeds into the direct
product of a finite collection of limit groups. Since finitely generated
subgroups of limit groups are limit groups, we may assume that S
is a subdirect product of finitely many limit groups. Moreover, by
projecting away from any factor with which S has trivial intersection,
we may assume that S is a full subdirect product of limit groups, say
S < Γ0 × · · · × Γn. Moreover, if two or more of the factors Γi are
abelian, we may regard their direct product as a single direct factor,
so we may assume that Γ0 is abelian (possibly trivial), and that Γi is
non-abelian for i > 0. Finally, the intersection S ∩ Γ0 has finite index
in some direct summand of Γ0: by projecting away from a complement
of such a direct summand, we may assume that S ∩Γ0 has finite index
in Γ0. Thus we obtain a neat embedding of S. With this existence
result in hand, it is clear that (5) implies (4). To complete the proof
we shall argue that (3) implies (5).

Since the given embedding is neat, the image of the projection of
S to Γ0 × Γi has finite index for any i > 0, and the quotient S of S
by Z(S) = S ∩ Γ0 is a full subdirect product of the non-abelian limit
groups Γ1, . . . ,Γn. Moreover, since S ∩ Γ0 is finitely generated, (3)
implies that H2(S0; Q) is finite dimensional for all subgroups S0 < S
of finite index in S. It then follows from Theorem 4.2 of [9] that the
image of the projection of S to Γi×Γj has finite index for any i, j with
0 < i < j ≤ n. Thus (3) implies (5). �

It follows easily from Theorem 5.1 that any subdirect product of
limit groups that contains a finitely presentable full subdirect product
is again finitely presentable. More generally we prove:

Theorem 5.2 (= Theorem D). Let n ≥ 2 be an integer, let S ⊂ D :=
Γ1× · · · × Γk be a full subdirect product of limit groups, and let T ⊂ D
be a subgroup that contains S. If S is of type FPn(Q) then so is T .

Proof. We have S < T < D = Γ1 × · · · × Γk where the Γi are limit
groups and S is a full subdirect product of type FPn(Q) with n ≥ 2.

In particular, S is of type FP2(Q), so by [9, Theorem 4.2] the quotient
group S/L is virtually nilpotent, where L = (S ∩ Γ1)× · · · × (S ∩ Γk).

By [9, Corollary 8.2] there is a finite index subgroup S0 < S, and a
subnormal chain S0 / S1 / · · · / S` = T such that each quotient Si+1/Si
is either finite or infinite cyclic.

Since S is of type FPn(Q), so is S0, and by the obvious induction so
are S1, . . . , S` = T . �

Note that the condition n ≥ 2 in Theorem 5.2 is essential. For
example, if G = 〈x, y|r1, r2, . . .〉 is a 2-generator group that is not
finitely presentable, then the subgroup T of 〈x, y〉×〈x, y〉 generated by
{(x, x), (y, y), (1, r1), (1, r2), . . . } is a full subdirect product that is not
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finitely generated, while the finitely generated subgroup S of T gener-
ated by {(x, x), (y, y), (1, r1)} is also a full subdirect product (provided
r1 6= 1 in 〈x, y〉). This is another example of the notable divergence in
behaviour between finitely presentable residually free groups and more
general finitely generated residually free groups.

5.2. The three factor case. Thereom B tells us which full subdirect
products of non-abelian limit groups are finitely presentable. In the
case of two factors, the criterion is particularly simple: the subgroup
must have finite index in the direct product. Our next result, which
extends Theorem E of [10], shows that the criterion also takes a par-
ticularly simple form in the case of a full subdirect product of three
non-abelian limit groups. Our results in Section 4 show that the situ-
ation is noticeably more subtle for subdirect products of four or more
factors.

Theorem 5.3. Let Γ1,Γ2,Γ3 be non-abelian limit groups, and let S <
Γ1 × Γ2 × Γ3 be a full subdirect product. Then S is finitely presentable
if and only if there are subgroups Λi < Γi of finite index, an abelian
group Q, and epimorphisms φi : Λi → Q, such that

S ∩ (Λ1 × Λ2 × Λ3) = ker(φ),

where

φ : Λ1 × Λ2 × Λ3 → Q, φ(λ1, λ2, λ3) := φ1(λ1) + φ2(λ2) + φ3(λ3).

Proof. The criterion in the statement is clearly sufficient, by Theorem
E, since each φi is an epimorphism. For example, given λ1 ∈ Λ1 and
λ2 ∈ Λ2, there exists λ3 ∈ Λ3 such that φ3(λ3) = −φ1(λ1) − φ2(λ2).
Thus (λ1, λ2, λ3) ∈ ker(φ) so the projection p12 : Γ1×Γ2×Γ3 → Γ1×Γ2

maps ker(φ) onto the finite-index subgroup Λ1×Λ2 of Γ1×Γ2. Similar
arguments apply to the projections p13 and p23, so the finite-index
subgroup ker(φ) of S is finitely presentable, by Theorem E, and hence
S is also finitely presentable.

Conversely, suppose that S is finitely presentable. By [9, Theorem
4.2] the image of each of the projections pij : S → Γi × Γj (1 ≤
i < j ≤ 3) has finite index. The images of p12 and p13 intersect in a
finite index subgroup K1 < Γ1. For each a ∈ K1 there are elements
(a, 1, xa), (a, ya, 1) ∈ S. So given a, b ∈ K1, we have ([a, b], 1, 1) =
[(a, 1, xa), (b, yb, 1)] ∈ [S, S]. Thus [K1, K1] < ([S, S] ∩ Γ1). Similarly
there are finite-index subgroups K2 < Γ2 and K3 < Γ3 such that
[Ki, Ki] < ([S, S] ∩ Γi) for i = 2, 3. Let A denote the abelian group

A =
K1 ×K2 ×K3

S ∩ (K1 ×K2 ×K3)
,

let φ : K1×K2×K3 → A be the canonical epimorphism, and let φi be
the restriction of φ to Ki for i = 1, 2, 3. Since p23(S) has finite index in
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Γ2×Γ3, the same is true of p23(S ∩ (K1×K2×K3)) in K2×K3. Now
let α = (x, y, z) · (S ∩ (K1 ×K2 ×K3)) ∈ A. For some positive integer
N we have (yN , zN) ∈ p23(S ∩ (K1 × K2 × K3)), so (w, yN , zN) ∈ S
for some w ∈ K1. But then αN = φ1(xNw−1), so φ1(K1) has finite
index in A. Similarly, φ2(K2) and φ3(K3) have finite index in A. Let
Q be the finite-index subgroup φ1(K1) ∩ φ2(K2) ∩ φ3(K3) of A, and
define Λi = φ−1

i (Q) for i = 1, 2, 3. Then Λi has finite index in Γi,
S∩ (Λ1×Λ2×Λ3) is the kernel of the restriction φ : Λ1×Λ2×Λ3 → Q,
and each φi : Λi → Q is an epimorphism. �

5.3. Classification up to commensurability. We construct a col-
lection of examples of finitely presentable residually free groups which
is complete up to commensurability.

Definition 5.4. Let G = {Γ1, . . . ,Γn} be a finite collection of 2 or more
limit groups, let c ≥ 2 be an integer, and let g = {(gk,1, . . . , gk,n), 1 ≤
k ≤ m} be a finite subset of Γ := Γ1 × · · · × Γn.

Define T = T (G, g, c) to be the subgroup of Γ generated by g together
with the c’th term γc(Γ) of the lower central series of Γ.

Theorem 5.5. Let T (G, g, c) be defined as above.

(1) If, for all 1 ≤ i < j ≤ n, the images in H1Γi × H1Γj of the
ordered pairs (gk,i, gk,j) generate a subgroup of finite index, then
the residually free group T (G, g, c) is finitely presentable.

(2) Every finitely presentable residually free group is either a limit
group or else is commensurable with one of the groups T (G, g, c).

Proof. To see that T = T (G, g, c) is finitely presentable, it is sufficient
in the light of Theorem E to note that the projection of T to Γi × Γj
is virtually surjective for each i < j. This in turn follows from the
observation that a subgroup of a finitely generated nilpotent group N
has finite index whenever its image in H1N has finite index.

Conversely, suppose that S is a finitely presentable residually free
group. If S is not itself a limit group, then Theorem B tells us that S
may be expressed as a full subdirect product of limit groups ∆1, . . . ,∆n

such that the projection of S to ∆i×∆j is virtually surjective for each
i < j. By Theorem 4.2 of [9], each ∆i contains a finite-index subgroup
Γi such that γn−1(Γi) ⊂ S. Set G = {Γ1, . . . ,Γn}, and c = n − 1. We
choose any finite set {(g1,1, . . . , g1,n), . . . , (gm,1, . . . , gm,n)} in the direct
product D := Γ1 × · · · × Γn whose image in D/γn−1(D) generates
(S ∩ D) · γn−1(D)/γn−1(D). Finally, take g to be the collection of
coordinates gk,i, and note that T = T (G, g, n− 1) = S ∩D is a finite-
index subgroup of S. �
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6. The Canonical Embedding Theorem

The purpose of this section is to prove Theorem A: we shall describe
an effective construction for ∃Env(S), hence ∃Env0(S), then establish
the universal property of the latter. We shall see that the direct factors
of ∃Env(S) are the maximal limit group quotients of S: the maximal
free abelian quotient H1(S,Z)/(torsion) is one of these, and the remain-
ing (non-abelian) quotients form ∃Env0(S). At the end of the section
we shall discuss how ∃Env(S) is related to the Makanin-Razborov di-
agram for S.

Our first goal is to prove Theorem A(1).

Theorem 6.1. There is an algorithm that, given a finite presentation
of a residually free group S will construct an embedding

S ↪→ ∃Env(S) = Γab × ∃Env0(S)

where Γab = H1(S,Z)/(torsion) and ∃Env0(S) = Γ1 × · · · × Γn with
each Γi (i ≥ 1) a non-abelian limit group. The intersection of S with
the kernel of the projection ρ : ∃Env(S)→ ∃Env0(S) is the centre Z(S)
of S.

In outline, our proof of this theorem proceeds as follows. First we
define a finite set of data — a maximal centralizer system — that
encodes a canonical system of subgroups in S. Then, in Lemma 6.7,
we prove that every finitely presented residually free group possesses
such a system; the proof, which is not effective, relies on Proposition
3.2 and results from [9]. In Lemma 6.9 we establish the existence
of a simple algorithm that, given a maximal centralizer system, will
construct S ↪→ ∃Env(S). Finally, in Subsection 6.3, we describe an
algorithm that, given a finite presentation of a residually free group,
will construct a maximal centralizer system for that group (termination
of the algorithm is guaranteed by Lemma 6.7).

The description of Z(S) given in Theorem 6.1 is covered by the
following lemma.

Lemma 6.2. Let S be a residually free group and let Z(S) be its centre.

(1) The restriction of S → H1(S,Z)/(torsion) to Z(S) is injective.
(2) If Γ is a non-abelian limit group and ψ : S → Γ has non-abelian

image, then ψ(Z(S)) = {1}.

Proof. Let γ ∈ Z(S). Since S is residually free, there is an epimorphism
ψ from S to a free group such that ψ(γ) 6= 1. But the only free group
with a non-trivial centre is Z, so ψ([S, S]) = 1 and hence γ 6∈ [S, S].
This observation, together with the fact that residually free groups are
torsion-free, proves (1).

Item (2) follows easily from the fact that limit groups are commutative-
transitive. �
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6.1. Centralizer systems. Before pursuing the strategy of proof out-
lined above, we present an auxiliary result that motivates the definition
of a maximal centralizer system. Recall that a set of subgroups of a
group H is said to be characteristic if any automorphism of H permutes
the subgroups in the set.

Proposition 6.3. Let D = Γ1 × · · · × Γn be a direct product of non-
abelian limit groups, let S ⊂ D be a full subdirect product, let Li = S∩Γi
and let

Mi = S ∩ (Γ1 × · · · × Γi−1 × 1× Γi+1 × · · · × Γn).

The sets of subgroups {L1, . . . , Ln} and {M1, . . . ,Mn} are characteris-
tic in S.

Proof. If Γ is a non-abelian limit group, and if γ1 and γ2 are two non-
commuting elements of Γ, then the centralizer CΓ(γ1, γ2) of the pair is
trivial, by commutative-transitivity.

The collection of centralizers of non-commuting pairs of elements
of S has a finite set of maximal elements, namely the centralizers of
pairs xi and yi which are non-commuting pairs in Li. These maximal
elements are exactly the Mi, which therefore form a characteristic set.
Moreover the Li are the centralizers of the Mi and hence the set of
these is also characteristic (cf. [11]). �

Remark 6.4. Applying the proposition with S = D one sees that if
D = Γ1 × · · · × Γn is the direct product of non-abelian limit groups,
then the set of subgroups Γi is characteristic. In particular, the decom-
position of D as a direct product of limit groups is unique.

The example D = Z× F2 shows that this uniqueness fails if abelian
factors are allowed.

Definition 6.5. Let S be a finitely presented, non-abelian residually
free group. A finite list (Yi;Zi) = (Y1, . . . , Yn;Z1, . . . , Zn) of finite sub-
sets of S will be called a maximal centralizer structure (MCS) for S if
it has the following properties.

MCS(1) Each Yi contains at least two elements xi and yi which do not
commute.

MCS(2) Each Zi contains all of the Yj with j 6= i.
MCS(3) For each i, the elements of Zi commute with the elements of

Yi. (Hence the elements in Yi commute with those in Yj for all
i 6= j.)

MCS(4) Each Zi generates a normal subgroup of S.
MCS(5) For each i, the quotient group S/〈Zi〉 admits a splitting (as an

amalgamated free product or HNN extension) either over the
trivial subgroup or over a non-normal, infinite cyclic subgroup.

MCS(6) There is a subgroup S0 of finite index in S such that each Yi ⊂
S0 and S0/〈〈Y1, . . . , Yn〉〉 is nilpotent of class at most n− 2.
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For the case n = 1 we require that 〈Z1〉 = Z(S) and that Y1 be the
given generating set for S.

Remark 6.6. One of the basic properties of non-abelian limit groups
is that that they split as in MCS(5). Conversely, we shall see in Lemma
6.9 that, in the presence of the other conditions, MCS(5) implies the
following condition:

MCS(5′) For each i, the quotient S/〈Zi〉 is a non-abelian limit group.

Lemma 6.7. Every finitely presented non-abelian residually free group
possesses a maximal centralizer structure.

Proof. Let S be a finitely presented non-abelian residually free group,
and define H = S/Z(S). We shall first construct an MCS for H.

As in the proof of Theorem B, H can be embedded as a full subdirect
product in some D = Γ1 × · · · × Γn where the Γi are non-abelian limit
groups. Let pi : D → Γi denote the projection.

If n = 1, then H itself is a non-abelian limit group. In this case,
we follow the directions in the definition of MCS: Y1 is the given set
of generators for H, Z1 = {1}, and H0 = H. Then MCS(1-4) and
MCS(6) are trivially satisfied, as is MCS(5)’, hence MCS(5).

¿From now on we assume that n > 1. Then Γi/(H ∩ Γi) is virtually
nilpotent by [9], so (H ∩Γi) is finitely generated as a normal subgroup
of Γi. Choose a finite set Yi of normal generators for H ∩Γi containing
at least two elements that do not commute.

Let Mi denote the centralizer of Yi in H (this is consistent with the
notation in Proposition 6.3). Note that Mi = H ∩ ker(pi), which by
Proposition 3.2(3) is a finitely generated subgroup of H. Note that
Γi ∼= H/Mi. Choose Zi to be a finite generating set for Mi containing
Yj for all j 6= i.

This provides an MCS (Yi;Zi) for H: each of the properties MCS(1-
4) is explicit in the construction, as are MCS(5)’ and MCS(6).

It remains to construct an MCS for S from the one just constructed
for H = S/Z(S). We know from Lemma 6.2 that Z(S) is a finitely

generated free abelian group. To obtain an MCS (Ŷi; Ẑ1) for S, we lift

each Yi ⊂ H to a finite subset Ŷi of S, and take a finite subset Ẑi in
the preimage of each Zi containing (i) Ŷj for all j 6= i, and (ii) a finite
generating set for Z(S).

To see that (Ŷi; Ẑ1) satisfies MCS(1), note that Z(S) ∩ [S, S] = 1.

Modulo this observation, it is clear that (Ŷi; Ẑ1) inherits the properties
MCS(1-6) from (Yi;Zi). �

6.2. Two useful lemmata. The following are the two principal lem-
mata used in the proof of Theorem A. We first prove a technical lemma
about splittings which allows us to detect when a given quotient of S
is a non-abelian limit group rather than a direct product.
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Lemma 6.8. Let Γ be a torsion–free group, H a group, and G ↪→ Γ×H
a subdirect product such that G∩Γ contains a free group of rank 2. Let
N be a normal subgroup of G with N < K = G ∩ H. If G/N admits
a cyclic splitting, and N 6= K, then K/N is cyclic and the splitting is
over K/N .

Proof. The quotient G/N ↪→ Γ×H/N is a subdirect product.
The cyclic splitting gives a G/N action on a tree T which is edge-

transitive and has cyclic edge-stabilisers. A free subgroup F = 〈x, y〉
of G ∩ Γ either fixes a vertex v or contains an element w acting hy-
perbolically (with axis A, say). In the first case v is unique (since F
cannot fix an edge), so v is K/N -invariant since K/N commutes with
F . But K/N is normal so K/N also fixes g(v) for all g ∈ G. Pick g
with g(v) 6= v, then K/N fixes more than one vertex, and hence fixes
an edge.

In the second case, the axis A is K/N -invariant since K/N commutes
with w. If the action of K/N on A is non-trivial, then A is the (unique)
minimal K/N–invariant subtree of T . But then T is F -invariant since
F commutes with K/N . Thus F acts non–trivially on A with cyclic
edge-stabilisers, which is impossible. Hence K/N fixes an edge.

In both cases, K/N fixes an edge, hence fixes all edges since K/N is
normal and the action is edge-transitive. Thus K/N is a cyclic group
acting trivially on T . The induced action of Γ = G/K has finite cyclic
edge stabilisers of the form StabG(e)/K. But Γ is torsion-free so these
are all trivial. �

As above, we write Gab = H1(G,Z)/(torsion).

Lemma 6.9. Suppose S is a finitely presented residually free group
and that (Y1, . . . , Yn;Z1, . . . , Zn) is an MCS for S. Then:

(0) each of the groups Si/〈Zi〉 is a non-abelian limit group;
(1) the natural homomorphism S → S/〈Z1〉 × · · · × S/〈Zn〉 has

kernel Z(S) and so embeds S/Z(S) as a full subdirect product
of n non-abelian limit groups;

(2) the natural homomorphism S → Γab×S/〈Z1〉× · · ·×S/〈Zn〉 is
an embedding, where Γab = H1(S,Z)/(torsion).

Definition 6.10. To obtain the reduced existential envelope of S we fix
an MCS (Y1, . . . , Yn;Z1, . . . , Zn) and define ∃Env0(S) := S/〈Z1〉×· · ·×
S/〈Zn〉. The existential envelopeof S is then defined to be ∃Env(S) =
Γab × ∃Env0(S), where Γab = H1(S,Z)/(torsion).

Remark 6.11. The above definition makes sense in the light of Lem-
mas 6.9 and Lemma 6.7. In the proof of Lemma 6.7, we chose the Zi so
that Mi = 〈Zi〉, in the notation of Proposition 6.3, and we shall see in a
moment that this equality is forced by the definition of an MCS alone.
The canonical nature of the Mi makes envelopes more canonical than
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they appear in the definition — Theorem A (4-5) makes this assertion
precise.

Proof. Suppose that (Y1, . . . , Yn;Z1, . . . , Zn) is an MCS for the finitely
presented residually free group S. Then by MCS(3) we know 〈Zi〉 ⊆
CS(Yi). Now there are xi, yi ∈ Yi such that [xi, yi] 6=S 1. Moreover
[xi, yi] /∈ CS(Yi) because S is residually free. Hence the images of xi
and yi in S/〈Zi〉 form a non-commuting pair. Writing S as a subdirect
product of some collection Γ1, . . . ,Γn of limit groups, the projections of
xi and yi into one of the factors Γj, say, do not commute. Now we see
that S is a subdirect product of Γ×H, where Γ = Γj is a non-abelian
limit group, H is a subdirect product of the Γi (i 6= j), and Zi ⊂ H
(by commutative transitivity in Γ).

Now put N = 〈Zi〉/S (by MCS(4)), and note that N ⊂ K := S∩H.
It follows from MCS(5) that S/N admits a splitting either over the
trivial subgroup or a non-normal, infinite cyclic subgroup. Then by
Lemma 6.8, if K 6= N , then the splitting is over K/N - a contradiction
since K/N is normal in S/N .

Hence 〈Zi〉 = N = K = S ∩H, so S/〈Zi〉 ∼= Γ is a non-abelian limit
group, which proves (0).

Since limit groups are fully residually free, the centralizer of any
non-commuting pair of elements in S/〈Zi〉 is trivial. Thus 〈Zi〉 is
maximal among the centralizers of non-commuting pairs of elements
of S (cf. Proposition 6.3). In particular 〈Zi〉 = CS(Yi) and 〈〈Yi〉〉 ⊆
CS(〈Zi〉). Clearly each 〈Zi〉 ⊇ Z(S).

Suppose now that 1 6= u ∈ 〈Z1〉 ∩ · · · ∩ 〈Zn〉 but u /∈ Z(S). Then
there is some other element v with [u, v] 6= 1. Since S is residually free,
u and v freely generate a free subgroup of rank 2. Thus u and v−1uv
freely generate a free subgroup of 〈Z1〉 ∩ · · · ∩ 〈Zn〉 which centralizes
each 〈〈Yi〉〉. So their images in S/〈〈Y1, . . . , Yn〉〉 freely generate a free
subgroup which contradicts MCS(6). Thus 〈Z1〉 ∩ · · · ∩ 〈Zn〉 = Z(S).
This proves (1).

The existence of the embedding in (2) follows immediately from (1),
in the light of Lemma 6.2. �

6.3. Proofs of Theorem A(1) and (2). We are given a finite presen-
tation 〈A | R〉 for a residually free group S. In order to prove Theorem
6.1, we must describe an algorithm that will construct an MCS for S
from this presentation: we know by Lemma 6.7 that S has an MCS
and we know from Lemma 6.9 (and Definition 6.10) how to embed S
in its envelopes once an MCS is constructed.

We shall repeatedly use the fact that one can use the given pre-
sentation of S to solve the word problem explicitly: one enumerates
homomorphisms from S to the free group of rank 2 by choosing puta-
tive images for the generators a ∈ A, checking that each of the relations
r ∈ R is mapped to a word that freely reduces to the empty word; if
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a word w in the letters A±1 is non-trivial is S, one will be able to see
this in one of the free quotients enumerated, since S is residually free.
(Implementing a naive search that verifies if w does equal the identity
is a triviality in any recursively presented group.)

Using this solution to the word problem, we can recursively enumer-
ate all finite collections ∆ = (Y1, . . . , Yn;Z1, . . . , Zn) of finite subsets of
S satisfying conditions MCS(1), MCS(2) and MCS(3). Next we enu-
merate all equations in S and look for those of the form a−1za =S w(Zi)
where z ∈ Zi and a±1 is a generator of S (and w any word on Zi). If a
given ∆ satisfies MCS(4), we will eventually discover this by checking
the list of equations. (As ever with such processes, one runs through the
finite diagonals of an array, checking all equations against all choices of
∆.) Thus we obtain an enumeration of those ∆ satisfying MCS(1-4).

Next, we must describe a process that, given

∆ = (Y1, . . . , Yn;Z1, . . . , Zn),

can determine if it satisfies MCS(5), i.e. if each of the groups S/〈Zi〉
has a splitting of the required form. Again we only need a process that
will terminate if ∆ does indeed satisfy MCS(5) — we are content for
it not to terminate if MCS(5) is not satisfied.

We have a finite presentation 〈A | R,Zi〉 for S/〈Zi〉. By applying
Tietze moves (or searching naively for inverse pairs of isomorphisms)
we can enumerate finite presentations of S/〈Zi〉 that have one of the
following two forms

〈A1, A2 | R1, R2, u1u2〉, 〈A1, t | R1, tu1t
−1v〉,

where A1, A2 and {t} are disjoint sets, Ri ∪ {ui} is a set of words
in the letters A±1

i , and v is a word in the letters A±1
1 . These are

the standard forms of presentation for groups that split over (possibly
trivial or finite) cyclic groups. When we find such a presentation, we
can use the solution to the word problem in S to determine if at least
one of the generators from A1 and (for the first form) one from A2 are
non-trivial in S. We proceed to the next stage of the argument only if
non-trivial elements are found. In the next stage, we use the solution
to the word problem to check if u1 = u2 = 1 in S (or u1 = v = 1). If
these equalities hold, we have found the desired splitting over the trivial
group. If not, then we have a splitting over a non-trivial cyclic group,
and since S is torsion-free, this cyclic group C = 〈u1〉 must be infinite.
In a residually free group, each 2-generator subgroup is free of rank 1
or 2 (consider the image of [x, y] in a free group). Thus C is normal
if and only if it is central, and this can be determined by applying the
solution of the word problem to all commutators [u, a] with a ∈ A1∪A2

(resp. a ∈ A1). In the case of amalgamated free products, we require
that there is a generator in each of A1 and A2 that does not commute
with C, in order that the splitting be non-degenerate. This concludes
the description of the process that will correctly determine if a given
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∆ = (Y1, . . . , Yn;Z1, . . . , Zn) satisfies MCS(5), halting if it does (but
not necessarily halting if it does not).

Finally, we use coset enumeration to get presentations 〈A′ | R′〉 of
subgroups of finite index S0 ⊂ S with Yi ⊂ S0, and we enumerate
equations in the quotients 〈A′ | R′, Y1, . . . , Yn〉 to see if the generators
satisfy the defining relations of the free nilpotent group of class n − 2
on |A′| generators (and we need only look for a positive answer). As an
MCS for S exists (Lemma 6.7) this process will eventually terminate,
yielding an explicit ∆ satisfying MCS(1-6).

Part (2) of Theorem A follows immediately from part 1 in the light
of Proposition 3.2. �

6.4. Proof of Theorem A(3) [the universal property of ∃Env0(S)].
We first record the following general result which is also used implicitly
in our discussion of how ∃Env(S) is related to the Makanin-Razborov
diagram of S.

Proposition 6.12. Let G be a subdirect product of a finite collection
of groups: G < G1 × · · · ×Gn. Then any homomorphism from S onto
a non-abelian limit group Γ factors through one of the projection maps
pi : G→ Gi (i = 1, . . . , n).

Proof. An easy induction reduces us to the case where n = 2.
Define Li := G ∩ Gi for i = 1, 2. Then Li is normal in G for each

i. Suppose that Γ is a non-abelian limit group and φ : G → Γ is an
epimorphism. Then φ(L1) and φ(L2) are mutually commuting normal
subgroups of φ(G) = Γ. If (say) φ(L1) is non-trivial in Γ, then com-
mutative transitivity in Γ implies that φ(L2) is abelian. But Γ has no
non-trivial abelian normal subgroups, so φ(L2) is trivial.

Hence one or both of φ(Li) (i = 1, 2) is trivial. But if φ(L1) is
trivial, then φ factors through p2, while if φ(L2) is trivial, then φ factors
through p1. �

To prove Theorem A (3), let S be a finitely presented, non-abelian,
residually free group with MCS (Y1, . . . , Yn;Z1, . . . , Zn). We have S ↪→
∃Env0(S) = S/〈Z1〉× · · ·×S/〈Zn〉, and we are given a homomorphism
φ : S → D = Λ1 × · · · × Λm with the Λi non-abelian limit groups
and φ(S) subdirect. We must prove that φ extends uniquely to a

homomorphism φ̂ : ∃Env0(S)→ D.
For k = 1, . . . ,m let φk denote the composition of φ with the pro-

jection D → Λk. Since Λk is a non-abelian limit group, Proposition
6.12 says that the surjective map φk : S → Λk factors through the
projection S → S/〈Zi〉 for some i. In particular, φk(Yj) = 1 for each
j 6= i, since Yj ⊂ Zi. However, we must have φk(Yi) 6= {1} by MCS(6)
(else Λ is virtually nilpotent). Thus i = i(k) is uniquely determined by
k.
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Applying the above in turn to each φk yields a unique i(k) such that
φk factors through a map ζk : S/〈Zi(k)〉 → Λk. Putting all these maps

together produces the required φ̂ : ∃Env0(S)→ Λ1 × · · · × Λm. �

6.5. Proof of Theorem A(4) [the uniqueness of ∃Env0(S)]. We
are assuming that φ : S ↪→ D = Λ1×· · ·×Λm is a full subdirect product
of non-abelian limit groups, and we must prove that φ̂ : ∃Env0(S)→ D
is an isomorphism.

As in the proof of Lemma 6.7, we can construct an MCS for S from
the embedding φ : S ↪→ D, say (Y ′1 , . . . , Y

′
m;Z ′1, . . . , Z

′
m). Here, Yi ⊂ S

generates φ(S)∩Λi as a normal subgroup, Z ′i generates the centralizer
of Y ′i in S, and φ induces an isomorphism φi : S/〈Z ′i〉 → Λi for i =
1, . . . ,m.

By using (Y ′i ;Z
′
i) in place of (Yi;Zi) in Definition 6.10 we obtain an

alternative model ∃Env0(S)′ = S/〈Z ′1〉 × · · · × S/〈Z ′m〉 for ∃Env0(S),
and we have an isomorphism Φ = (φ1, . . . , φm) : ∃Env0(S)′ → D that
restricts to φ on the canonical image of S in ∃Env0(S)′.

In proving Theorem A(3) we established the universal property for
∃Env0(S)′. We apply this to obtain a unique homomorphism α :
∃Env0(S)′ → ∃Env0(S) extending the inclusion S ↪→ ∃Env0(S). Thus
we obtain a homomorphism α ◦ Φ−1 : D → ∃Env0(S) such that

α ◦ Φ−1 ◦ φ is the identity on S. But this means that α ◦ Φ−1 ◦ φ̂ :
∃Env0(S) → ∃Env0(S) extends id : S → S. The identity map of
∃Env0(S) is also such an extension, so by the uniqueness assertion in

A(3) we have that α ◦Φ−1 is a left-inverse to φ̃. By reversing the roles
of ∃Env0(S) and ∃Env0(S)′ we see that it is also a right-inverse. �

6.6. Makanin-Razborov Diagrams. We explain how existential en-
velopes are related to Makanin-Razborov diagrams.

The Makanin-Razborov diagram (or MR diagram) of a finitely gen-
erated group G is a method of encoding the collection of all epimor-
phisms from G to free groups. The name arises from the fact that
these diagrams originate from the fundamental work of Makanin [27]
and later Razborov [29] on the solution sets of systems of equations in
free groups.

The MR diagram of G consists of a finite rooted tree, where the root
is labelled by G and the other vertices are labelled by limit groups,
with the leaves being labelled by free groups. The edges are labelled
by proper epimorphisms – the epimorphism labeling e = (u, v) mapping
the group labeling u onto the group labeling v.

The basic property of this diagram is that each epimorphism from
G onto a free group can be described using a directed path in this
graph from the root to some leaf, the epimorphism in question being
a composite of all the labeling epimorphisms of edges on this path,
interspersed with suitable choices of ‘modular’ automorphisms of the
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intermediate limit groups that label the vertices. Details can be found
in [30, Section 7] and, in different language, [23, Section 8].

An immediate observation is that any epimorphism from G onto
a free group factors through the canonical quotient G/FR(G), where
FR(G) is the free residual of G, namely the intersection of the kernels
of all epimorphisms from G to free groups. Thus the MR diagrams of
G and of G/FR(G) are identical.

Observe that FR(G/FR(G)) = 1; in other words G/FR(G) is resid-
ually free. Thus, when studying MR diagrams for finitely generated
groups, it is sufficient to restrict attention to the case of residually free
groups.

For finitely generated residually free G, the top layer of the Makanin-
Razborov diagram consists of the set of maximal limit-group quotients
of G. These are the factors of our existential envelope ∃Env(G), namely
the maximal free abelian quotient Γab(G) and the non-abelian quo-
tients Γ1, . . . ,Γn. The fact that one can construct this effectively is
contained in [23, Corollary 3.3], but our construction of the embedding
G ↪→ ∃Env(G) is of a quite different nature, and we feel that there is
considerable benefit in its explicit description. It is also worth pointing
out that neither the construction of our algorithm nor the proof that
it terminates relies on the original results of Makanin and Razborov.

7. Decision problems

Theorem A provides considerable effective control over the finitely
presented residually free groups. In this section we use this effectiveness
to solve the multiple conjugacy problem for these groups and the mem-
bership problem for their finitely presented subgroups. Both of these
problems are unsolvable in the finitely generated case, indeed there ex-
ist finitely generated subgroups of a direct product of two free groups
for which the conjugacy and membership problems are unsolvable [28].

7.1. The conjugacy problem. Instead of considering the conjugacy
problem for individual elements, we consider the multiple conjugacy
problem, since the proof that this is solvable is no harder. The multiple
conjugacy problem for a finitely generated group G asks if there is an
algorithm that, given an integer l and two l-tuples of elements of G
(as words in the generators), say x = (x1, . . . , xl) and y = (y1, . . . , yl),
can determine if there exists g ∈ G such that gxig

−1 = yi in G, for
i = 1, . . . , l. There exist groups in which the conjugacy problem is
solvable but the multiple conjugacy problem is not [6].

The scheme of our solution to the conjugacy problem uses an argu-
ment from [10] that is based on Theorem 3.1 of [4]. This is phrased in
terms of bicombable groups. Recall that a group G with finite gener-
ating set A is said to be bicombable if there is a constant K and choice
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of words {σ(g) | g ∈ G} in the letters A±1 such that

d(a.σ(a−1ga′)t, σ(g)t) ≤ K

for all a, a′ ∈ A and g ∈ G, where wt denotes the image in G of the
prefix of length t in w, and d is the word metric associated to A.

We shall only use three facts about bicombable groups. First, the
fundamental groups of compact non-positively curved spaces are the
prototypical bicombable groups, and limit groups are such fundamen-
tal groups [1]. Secondly, there is an algorithm that given any finite
set X ⊂ Γ as words in the generators of G will calculate a finite gen-
erating set for the centralizer of X. (This is proved in [4] using an
argument from [19].) Finally, we need the fact that the multiple con-
jugacy problem is solvable in bicombable groups. The proof of this is
a mild variation on the standard proof that bicombable groups have a
solvable conjugacy problem. The key point to observe is that, given
words u and v in the generators, if g ∈ G is such that g−1ug = v,
then as t varies, the distance from 1 to σ(g)−1

t uσ(g)t never exceeds
K max{|u|, |v|}. It follows that in order to check if two (u1, . . . , uk)
and (v1, . . . , vk) are conjugate in G, one need only check if they are
conjugated by an element g with d(1, g) ≤ |2A|K max{|ui|, |vi|} (cf. Algo-
rithm 1.11 on p. 466 of [5]).

Proposition 7.1. Let Γ be a bicombable group, let H ⊂ Γ be a sub-
group, and suppose that there exists a subgroup L ⊂ H normal in Γ
such that Γ/L is nilpotent. Then H has a solvable multiple conjugacy
problem.

Proof. Given a positive integer l and two l-tuples x, y from H (as lists
of words in the generators of Γ) we use the positive solution to the
multiple conjugacy problem in Γ to determine if there exists γ ∈ Γ
such that γxiγ

−1 = yi for i = 1, . . . , l. If no such γ exists, we stop and
declare that x and y are not conjugate in H. If γ does exist then we
find it and consider

γC = {g ∈ Γ | gxig−1 = yi for i = 1, . . . , l},

where C is the centralizer of x in Γ. Note that x is conjugate to y in
H if and only if γC ∩H is non-empty.

We noted above that there is an algorithm that computes a finite gen-
erating set for C. This enables us to employ Lo’s algorithm (Lemma
7.3) in the nilpotent group Γ/L to determine if the image of γC inter-
sects the image of H. Since L ⊂ H, this intersection is non-trivial (and
hence x is conjugate to y) if and only if γC ∩H is non-empty. �

A group G is said to have unique roots if for all x, y ∈ G and n 6= 0
one has x = y ⇐⇒ xn = yn. It is easy to see that residually free
groups have this property. As in Lemma 5.3 of [10] we have:
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Lemma 7.2. Suppose G is a group in which roots are unique and
H ⊂ G is a subgroup of finite index. If the multiple conjugacy problem
for H is solvable, then the multiple conjugacy problem for G is solvable.

The final lemma that we need can be proved by a straightforward
induction on the nilpotency class, but there is a more elegant argument
due to Lo (Algorithm 6.1 of [24]) that provides an algorithm which is
practical for computer implementation.

Lemma 7.3. If Q is a finitely generated nilpotent group, then there is
an algorithm that, given finite sets S, T ⊂ Q and q ∈ Q, will decide if
q〈S〉 intersects 〈T 〉 non-trivially. �

Theorem 7.4 (=Theorem J). The multiple conjugacy problem is solv-
able in every finitely presented residually free group.

Proof. Let Γ be a finitely presented residually free group. Theorem A
allows us to embed Γ as a subdirect product in D = Λ1×· · ·×Λn, where
Λi are limit groups, each Li = Λi ∩ Γ is non-trivial, L = L1 × · · · × Ln
is normal in D, and D/L is virtually nilpotent. Let N be a nilpotent
subgroup of finite index in D/L, let D0 be its inverse image in D and
let Γ0 = D0 ∩ Γ.

We are now in the situation of Proposition 7.1 with Γ = D0 and
H = Γ0. Thus Γ0 has a solvable multiple conjugacy problem. Lemma
7.2 applies to residually free groups, so the multiple conjugacy problem
for Γ is also solvable. �

7.2. The membership problem. In the course of proving our next
theorem we will need the following technical observation.

Lemma 7.5. If Λ is a limit group, then there is an algorithm that,
given a finite set X ⊂ Λ, will output a finite presentation for the sub-
group generated by X.

Proof. Let H be the subgroup generated by X. The lemma is a simple
consequence of Wilton’s theorem [32] that Λ has a subgroup of finite
index that retracts onto H (using the argument of Lemma 5.5 in [10]).

�

Theorem 7.6 (=Theorem K). If G is a finitely presented residually
free group (given by a finite presentation) and H ⊂ G is a finitely pre-
sentable subgroup (given by a finite generating set of words in the gener-
ators of G), then the membership problem for H is decidable, i.e. there
is an algorithm which, given g ∈ G (as a word in the generators) will
determine whether or not g ∈ H.

Note that, although we assume that H is finitely presentable, we do
not assume knowledge of a finite presentation for H. Moreover, our
algorithm is not uniform in H. That is, the algorithm depends on H
(but not on g ∈ G). Indeed, the proof below describes more than one
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algorithm: for any given H one of these algorithms works, but we do
not claim to be able to tell which. See the remark following this proof
for further discussion of this problem.

Proof. Theorem A provides a direct product D of limit groups that
contains G, and a solution to the membership problem for H ⊂ D
provides a solution for H ⊂ G. Thus there is no loss of generality in
assuming that G is a direct product of limit groups, say G = Λ1 ×
· · ·×Λn. To complete the proof, we argue by induction on n. The case
n = 1 is covered by the fact that limit groups are subgroup separable
[32].

Let us assume, then, that there is a solution to the membership
problem for each finitely presented subgroup of a direct product of
n− 1 or fewer limit groups. We have H ⊂ G = Λ1 × · · · × Λn. Define
Li = H ∩ Λi.

There is no loss of generality in assuming that elements g ∈ G are
given as words in the generators of the factors, and thus we write
g = (g1, . . . , gn). We assume that the generators ofH are given likewise.

We first deal with the case where some Li is trivial, say L1. The
projection of H to Λ2×· · ·×Λn is then isomorphic to H, so in particular
it is finitely presented and our induction provides an algorithm that
determines if (g2, . . . , gn) lies in this projection. If it does not, then
g /∈ H. If it does, then naively enumerating equalities g−1w = 1 we
eventually find a word w in the generators of H so that g−1w projects
to 1 ∈ Λ2× · · · ×Λn. Since L1 = H ∩Λ1 = {1}, we deduce that in this
case g ∈ H if and only if g−1w = 1, and the validity of this equality
can be checked because the word problem is solvable in G.

It remains to consider the case where H intersects each factor non-
trivially. Again we are given g = (g1, . . . , gn). The projection Hi of H
to Λi is finitely generated and Wilton’s theorem [32] tells us that Λi is
subgroup separable, so we can determine algorithmically if gi ∈ Hi. If
gi /∈ Hi for some i then g /∈ H and we stop. Otherwise, we replace G
by the direct product D of the Hi. Lemma 7.5 allows us to compute a
finite presentation for Hi and hence D.

We are now reduced to the case where H is a full subdirect product
of G(= D). Theorem A(2) now tells us that Q = G/L is virtually
nilpotent, where L = L1 × · · · × Ln. Let φ : G → Q be the quotient
map.

Virtually nilpotent groups are subgroup separable, so if φ(g) /∈ φ(H)
then there is a finite quotient of Q (and hence G) that separates g from
H. But φ(g) /∈ φ(H) if g /∈ H because L = kerφ is contained in H.
Thus an enumeration of the finite quotients of G provides an effective
procedure for proving that g /∈ H if this is the case. (Note that we need
a finite presentation of G in order to make this enumeration procedure
effective; hence our appeal to Lemma 7.5.)
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We now have a procedure that will terminate in a proof if g /∈ H.
Once again, we run this procedure in parallel with a simple-minded
enumeration of g−1w that will terminate with a proof that g ∈ H if
this is true. �

Remark 7.7. Since we discovered the above proof, Bridson and Wilton
[12] have proved that in the profinite topology of any finitely gener-
ated residually free group, all finitely presentable subgroups are closed.
This gives a uniform solution to the membership problem for such sub-
groups. Using the results of [12] and [9], Chagas and Zalesski [14]
proved that all finitely presented residually free groups are conjugacy
separable.

7.3. Recursive enumerablility. In view of the insights we have gained
into the structure of finitely presentable residually free groups, it seems
reasonable to conjecture that the isomorphism problem for this class
of groups is solvable. We have not yet succeeded in constructing an
algorithm to determine isomorphism, but we are nevertheless able to
prove the following partial result in this direction.

Theorem 7.8 (= Theorem G). The class of finitely presentable resid-
ually free groups is recursively enumerable. More precisely, there is a
Turing machine which will output a list of finite group presentations
P1,P2, . . . such that:

(1) the group Gi presented by each Pi is residually free; and
(2) every finitely presented residually free group is isomorphic to at

least one of the groups Gi.

Proof. First we enumerate the limit groups, using the algorithm in [20].
This leads in a standard way to an enumeration of finite subsets Y of
finite direct products thereof: Y ⊂ D := Γ1 × · · · × Γn.

For each such Y and each pair i, j, the Todd-Coxeter procedure will
tell us if pij(Y ) generates a finite-index subgroup of Γi × Γj (but will
not terminate if it does not).

Whenever we encounter a finite collection of limit groups Γ1, . . . ,Γn
and a finite subset Y ⊂ D such that pij(Y ) generates a finite-index
subgroup of Γi × Γj for all i, j, we set about constructing a finite pre-
sentation for the subgroup generated by Y , using Theorem 3.4.

Thus a list can be constructed of all finitely-presented full subdirect
products of limit groups, together with a finite presentation for each
one. By Theorem B this list contains (at least one isomorphic copy of)
every finitely presentable residually free group. �

The facts we have proved or mentioned in this paper provide recur-
sive enumerations of various other classes of groups:

(1) There is a recursive enumeration of the finitely generated resid-
ually free groups S = sgp(X): each is given by a finite set X
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that generates a full subdirect product in a finite direct product
of limit groups Γ1 × · · · × Γn.

(2) One can extract from (1) a recursive enumeration of the finitely
generated residually free groups with trivial centre (those for
which each Γi is non-abelian), and a complementary enumera-
tion of those with non-trivial centre.

(3) The subsequence of (1) consisting of those S that are finitely
presentable is recursively enumerable (cf. Theorem 7.8).

(4) The subsequences of (3) consisting of those finitely presented
residually free groups with trivial (resp. non-trivial) centre are
recursively enumerable, as are the corresponding subsequences
of the enumeration in Theorem 7.8.

7.4. Partial results on the isomorphism problem. Suppose we
are given two finite presentations of residually free groups G and H.
Can we decide algorithmically whether or not G ∼= H?

There is a partial algorithm that will search for a mutually inverse
pair of isomorphisms, expressed in terms of the given finite generating
sets for G and H. This will terminate if and only if G ∼= H, giving us
the desired isomorphism in the process.

The difficult part of the problem is therefore to recognise, via invari-
ants or otherwise, when G 6∼= H.

Our earlier results have provided computations of an important in-
variant, namely the set of maximal limit group quotients of G. Using
the solution to the isomorphism problem for limit groups ([13, 15]), we
can distinguish G from H unless these agree for G and H. The problem
is thus effectively reduced to the case where G and H are specifically
given to us as full subdirect products of limit groups Γ1, . . . ,Γn.

Moreover, Z(G) ∼= Z(H) = Z, say, and the Γi are all non-abelian
if Z is trivial. In the case where Z is non-trivial, then precisely one
of the Γi is abelian. We make the convention that in this case Γ1 is
abelian. Then Γ1

∼= H1(G,Z)/(torsion) ∼= H1(H,Z)/(torsion), and
Z(G) = G ∩ Γ1, Z(H) = H ∩ Γ1. Under these circumstances, as a
special case of Theorem A(4) we have:

Proposition 7.9. Any isomorphism θ : G → H is the restriction of
an ambient automorphism of the direct product Γ1 × · · · × Γn. This in
turn restricts to a set of isomorphisms Γi → Γσ(i) (i = 1, . . . , n) for
some permutation σ of {1, . . . , n}.

Since there are only finitely many candidate permutations σ, this
proposition effectively reduces the isomorphism problem to the case
where σ is the identity, in other words to the following:

Question: Given finitely presented full subdirect products G,H of a
collection of limit groups Γ1, . . . ,Γn (at most one of which is abelian),
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can we find automorphisms θi of Γi for each i, such that

(θ1, . . . , θn)(G) = H?

Recall that the automorphism groups of limit groups can be effec-
tively described [13]. In particular, we can find finite generating sets
Xi for each Aut(Γi).

Proposition 7.10. There is a solution to the isomorphism problem in
the case when at most 2 of the Γi are non-abelian.

Proof. Suppose first that no Γi is abelian (so that n ≤ 2). If n = 1
then G = Γ1 = H and there is nothing to prove, so we may suppose
that n = 2. By Theorem E, since G,H are finitely presented they
have finite index in Γ = Γ1 × Γ2. The index can be computed in each
case using the Todd-Coxeter algorithm, and we may assume that the
two indices are equal (to k, say). Now by [13] we can find a finite set
X = X1 ×X2 of generators for Θ = Aut(Γ1)× Aut(Γ2).

It is straightforward to construct the permutation graph for the ac-
tion of Θ on the finite set of index k subgroups, and then to check
whether or not G,H lie in the same component of this graph. This
happens if and only if G is isomorphic to H via an automorphism
of Γ1 × Γ2 that preserves the direct factors. By Proposition 7.9, this
suffices to solve the problem.

If Γ1 is abelian, then G and H need not have finite index, so we
have to amend the argument slightly. We may assume that Γ1 is the
only abelian direct summand. Moreover, Γ1 is a torsion free abelian
quotient of G and of H, while G∩Γ1 = Z(G) and H ∩Γ1 = Z(H). By
Section 6.4, we can effectively determine Z(G) and Z(H) as subgroups
of Γ1. By the classification of finitely generated abelian groups, we can
decide whether or not there is an automorphism of Γ1 that maps Z(G)
to Z(H). If not, then G 6∼= H and we are finished. Otherwise, we are
reduced to the case where G ∩ Γ1 = H ∩ Γ1.

Now there is a unique direct summand A of Γ1 such that Γ1 ∩ G
has finite index in A. Choosing an arbitrary direct complement B for
A in Γ1 gives us embeddings of G and H as finite index subgroups of
(Γ1/B) × Γ2

∼= A × Γ2 or of A × Γ2 × Γ3, and we may complete the
argument as before. �

One possible approach to the more general case is to proceed by
induction on the number of direct factors. Projecting a finitely pre-
sentable subdirect product to the product of fewer factors again gives
a finitely presentable group, so by induction we can assume that the
corresponding projections of our two subgroups are isomorphic. But
for the moment we do not see how this information might be used to
complete a proof that the isomorphism problem is solvable.
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[25] W. Magnus, Über Gruppen und zugeordnete Liesche Ringe, J. Reine Angew.
Math. 182 (1940), 142–149.

[26] W. Magnus, A. Karrass and D. Solitar, “Combinatorial Group Theory”, Wi-
ley, New Yok, 1966.

[27] G. S. Makanin, Equations in a free group, Math. USSR Izv. 21 (1983), 483-
546.

[28] C. F. Miller III, “On group-theoretic decision problems and their classifica-
tion”, Annals of Mathematics Studies, No. 68, Princeton University Press
(1971).

[29] A. A. Razborov, On systems of equations in a free group, Math. USSR Izv.
25 (1985), 115-162.

[30] Z. Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams,
Publ. Math. Inst. Hautes Études Sci., pages 31–105, 2001.

[31] J. H. C. Whitehead, On Adding Relations to Homotopy Groups, Annals of
Math. 42 (1941), 409–428.

[32] H. Wilton. Hall’s Theorem for limit groups. Geom. Funct. Anal., to appear.
arXiv:math/0605546.

Martin R. Bridson, Mathematical Institute, 24–29 St Giles’, Oxford
OX1 3LB, U.K.

E-mail address: bridson@maths.ox.ac.uk

James Howie, Department of Mathematics, Heriot–Watt University,
Edinburgh EH14 4AS

E-mail address: jim@ma.hw.ac.uk

Charles F. Miller III, Department of Mathematics and Statistics,
University of Melbourne, Parkville 3052, Australia

E-mail address: c.miller@ms.unimelb.edu.au

Hamish Short, L.A.T.P., U.M.R. 6632, Centre de Mathématiques et
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