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Abstract : We develop the ideas of combable and bicombable groups introduced by
Cannon, Epstein, Holt, Patterson and Thurston [CEHPT] and others, generalizing
the classes of automatic and biautomatic groups. These classes include Gromov’s
hyperbolic groups, and the fundamental groups of closed compact manifolds of non-
positive curvature. We study quasiconvex subgroups of these groups and show that
the results of Gersten and Short [GS1] for biautomatic groups can be extended to
the class of bicombable groups. For instance it is shown that a nilpotent subgroup
of a bicombable group is abelian by finite.

As an appendix we present an elementary introduction to quasiconvexity, and
use the ideas to give a new proof of Howson’s theorem: that the intersection of two
finitely generated subgroups of a free group is finitely generated.

Resumé : Nous étudions les classes des groupes peignables et bipeignables, intro-
duites par Cannon, Epstein, Holt, Patterson et Thurston [CEHPT], qui contiennent
les classes des groupes automatiques et biautomatiques. Ces classes contiennent les
groupes hyperboliques de Gromov, et les groupes fondamentaux des variétés fermées
compactes de courbure non–positive. Nous étudions les sous–groupes quasiconvexes
de ces groupes et nous montrons que les résultats de Gersten et Short [GS1] sur les
groupes biautomatiques s’étendent aux groupes bipeignables. Par exemple, nous
montrons qu’un sous–groupe nilpotent d’un groupe bipeignable est une extension
finie d’un groupe abelien.

En appendice, nous présentons une introduction élémentaire aux idées de quasi-
convexité dans un groupe libre, et nous utilisons ces idées pour donner une nouvelle
démonstration du théorème de Howson : l’intersection de deux sous–groupes de
type fini d’un groupe libre est de type fini.
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Introduction

Current work in combinatorial group theory has led to the study of the geom-
etry of a group, via the study of the Cayley graph as a metric space. Gromov’s
work [Gr] on hyperbolic groups and the work of Cannon [Ca] and Cannon et al.
[CEHPT] on automatic groups are important examples of this type of approach.
From this geometric point of view, words in the generators are identified with paths
in the Cayley graph. Thus a word uniquely defines a path, once an initial vertex is
specified.

In this article we shall study combings of groups, first introduced in [CEHPT]
(see also [WPT] and [A]). Roughly speaking a combing is a set of representative
words (written as products of the generators) for the elements of the group which
have the following nice property: once an initial vertex is chosen, representative
words which end at nearby elements of the group are uniformly close, as paths in in
the Cayley graph. A combing becomes a bicombing if in addition we have the same
property for representative words which begin at nearby vertices and end at the
same vertex. Hyperbolic groups and the fundamental groups of closed, compact,
non-positively curved manifolds are bicombable, as are groups acting freely and
cocompactly on Euclidean buildings.

A (bi-)automatic group is a (bi-)combable group where in addition the set of
representative words is a regular language in the free semigroup on the genera-
tors and their inverses. These groups are open to study via the theory of finite
state automata, as initiated in [CEHPT]. We do not know of an example of a (bi-
)automatic group which is not (bi-)combable. The results presented here are closely
related to the results of [GS1] concerning biautomatic groups. In that article, cer-
tain subgroups of biautomatic groups are studied, and it is shown for instance that
a nilpotent (or polycyclic) subgroup of a biautomatic group is a finite extension
of a finitely generated abelian group. Here we shall establish the same result for
bicombable groups, thus removing the necessity for considering regular languages
and finite state automata.

The only important property of an automatic group which we do not know
how to prove for combable groups is that an automatic group is not an infinite
torsion group. Neither do we know whether or not bicombability is a geometric
property, i.e. invariant under quasiisometry (see e.g. [Gh]) – not even whether
a finite extension of a bicombable group is bicombable. We show however that
the conjugacy problem is solvable for bicombable groups. Notice that Collins and
Miller [CM] give an example of a group G with a solvable conjugacy problem which
contains an index two subgroup H unsolvable conjugacy problem. They also give
an example where the index two subgroup H has solvable conjugacy problem, but
the overgroup G does not. Thus this problem is not geometric.

Alonso and Bridson [AB] have independently obtained most of the results pre-
sented here, using some related definitions of bicombability. Their aim is to find
a geometric definition of semi-hyperbolicity to be to non-positively curved spaces
what Gromov’s definition of hyperbolicity is to negatively curved ones. In this way
they hope to generalize many of Gromov’s constructions and results, and to study,
amongst other things, the structure of the group at infinity.

This paper is organised as follows. In the first section we develop the basic def-
initions of (bi-)combable groups, and show that the property of being combable is
geometric (i.e. is a quasiisometry invariant). The definition we use differs from
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that given in [CEHPT] in that we do not require representative words to be quasi-
geodesic. In the second section we show that combable groups are finitely presented
and have solvable word problem. Bicombable groups are shown to have solvable
conjugacy problem. Here we use some recent ideas of A. Casson, J. Stallings and
S.M. Gersten concerning isodiametric inequalities. The following section contains
a discussion of quasiconvex subgroups of (bi-)combable groups, following [GS1].
The useful results here are that a quasiconvex subgroup of a (bi-)combable group
is (bi-)combable (§3.2), and that the intersection of two quasiconvex subgroups is
also quasiconvex (§3.4). This last result takes the place of analogous result of [GS1]
for regular subgroups. In the final section we show how to generalize the results of
[GS1] to the class of bicombable groups, using the translation length as in [GS1].
We finish with a new proof, due to S.M. Gersten, of Yau’s theorem, that an abelian
subgroup of a fundamental group of a non-positively curved closed Riemannian
manifold is finitely generated (§4.5).

I would like to thank S.M. Gertsen for his helpful remarks (thanks to email) while
this work was being done, and the members of the laboratoire de mathématique
de l’Ecole Normale Supérieure de Lyon, especially E. Ghys and F. Paulin, for their
many useful comments. I would also like to thank the Fondation Scientifique de
Lyon et du Sud-Est for their financial support and the ENS Lyon for their hospi-
tality for the year 1989-90.
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Section 1 Definitions and elementary properties

Let G be a finitely generated group, and let X be a finite set of generators for
G. By adjoining a set of formal inverses, we obtain a set of monoid generators
A = X ∪X−1. As we wish to allow non-reduced words here, we shall consider the
free monoid on A, denoted A?, of all finite words on the generators in X and their
inverses. The free group is naturally contained in A?, and the map µ : A? → G is
well defined. As usual, we denote the length of a word w ∈ A? by `(w), and we
write

|g|X = min{`(w) | w ∈ A?, µ(w) = g}.

The Cayley graph ΓX(G) of G with respect to a set of generators X has a vertex
for each element of G, and an oriented edge from g to gµ(x) for each g ∈ G and for
each x ∈ X. We make the Cayley graph into a metric space by assigning length 1
to each edge, and defining the distance d(g, h) between the vertices corresponding
to g, h ∈ G to be the infimum of the lengths of (non-directed) paths joining them.
Thus the distance in the Cayley graph is d(g, h) = |g−1h|X . It is clear that with
this definition of distance, the group G acts on the Cayley graph ΓX(G) on the left
by isometries.

We shall frequently identify the word w ∈ A? with the path

w : ([0,∞), 0)→ (ΓX(G), 1)

where w is a local isometry of [0, `(w)] onto the path in ΓX(G) based at the identity
which spells out the letters of w, and w(t) = µ(w) for t > `(w); i.e. if w = a1 . . . an,
then w([i− 1, i]) is the edge labelled ai based at the vertex labelled µ(a1 . . . ai−1).
(A negative exponent indicates that the edge with this letter is traversed in the
opposite sense to its given orientation.)

Definition
A map σ : G → A? is called a section if it is a right inverse to the natural

surjection µ, i.e. for all g ∈ G, µ · σ(g) = g.
A section σ : G→ A? is called a combing if there is a positive constant K1 such

that for each g ∈ G and x ∈ X the following condition is satisfied:
C1) d(σ(g)(t), σ(gµ(x))(t)) ≤ K1.
In this case we say that the words σ(g) and σ(gµ(x)) are uniformly K1-close (or

K1 fellow travellers).
If each word σ(g) is a geodesic, i.e. if `(σ(g)) = |g|X , then the combing is said

to be geodesic . More generally, we say that the combing is short if, in addition
to the condition C1, there is a constant K2 such that for all g ∈ G, and all x ∈ X,
the combing also satisfies:

C2) |`(σ(gµ(x)))− `(σ(g))| ≤ K2.

In order to consider a symmetric property concerning words which begin close
and end at the same vertex, we need to consider the left action of G on ΓX(G).

For h ∈ G and w ∈ A?, we use h · w to denote the path w translated to begin
at the vertex corresponding to the element h - i.e. the image of w under the left
action of G on ΓX(G). A combing is called a bicombing if in addition to C1) we
have for each g ∈ G and x ∈ X

C3) d(µ(x) · σ(g)(t), σ(µ(x)g)(t)) ≤ K1.
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As before, we say that the bicombing is short if C1, C2, and C3 old, and in
addition

C4) |`(σ(µ(x)g))− `(σ(g))| ≤ K2.

If K ≥ maxKi, we shall often call a (bi-)combing which satisfies C1 and C2 (and
C3, C4) a K-(bi-)combing.

A group is said to be (bi-)combable if it has a (bi-)combing satisfying C1 (and
C3). Alonso [A] calls any section G→ A? a combing, and calls a section with the
above condition C1 a quasi-Lipschitz combing.

Examples 1.1
0) Clearly a finite group has a bicombing (for instance take the set of all elements

as a set of generators).
1) Consider the infinite cyclic group generated by x; clearly the set of representa-

tives {xm | m ∈ Z} gives a geodesic bicombing with constant 1. If however we take
as representatives {xm(x2x−2)5} we get a bicombing which is no longer geodesic,
but is short, and we may take constants K1 = 2, and K2 = 1. If we now consider

{xm(x2x−2)3m}

we obtain a bicombing which is not short, with K1 = 3. Finally notice that

{(x2x−2)3mxm}

is not a combing.
2) For a finitely generated free group, the set of freely reduced words forms a

bicombing, with constant 1.
3) A symmetric combing (w = σ(g) implies w−1 = σ(g−1)) is a bicombing.
4) Following Gromov [Gr], say that a group is δ-hyperbolic if geodesic triangles

in the Cayley graph are δ-slim (each side is contained in a δ-neighbourhood of the
other two). For a δ-hyperbolic group G choose a geodesic representative σ(g) for
each element g ∈ G. For each generator x, there is a geodesic triangle with sides
labelled σ(g), σ(gx) and x for each g ∈ G. The sides σ(g) and σ(gx) are uniformly
2(δ + 1)-close. This means that we have a combing. As the set of all geodesics is
symmetric, by considering the triangle with sides x, σ(µ(x)g), µ(x) ·σ(g) it is easily
seen that in fact we have a bicombing with constant 2(δ + 1) + 1.

5) The finitely generated free abelian group Zn has a bicombing {(m1, . . . ,mn)}
with constant 1, where the path has the form xm1

1 . . . xmn
n .

6) For Z2, generated by x, y, the section

{xnym | |n| ≥ |m|} ∪ {ymxn | |n| < |m|}

is not a combing — the words xnyn, yn+1xn are not uniformly k-close for k < 2|n|.
7) For the Heisenberg group {akbmcn} is a section, but is not a combing, as

akbmcn.a = ak+1bmcn−m where

a =




1 1 0
0 1 0
0 0 1



 b =




1 1 0
0 1 1
0 0 1



 c =




1 0 1
0 1 0
0 0 1





In fact this group has no short combing as it does not satisfy a quadratic isoperi-
metric inequality (see section 2 below, and [CEHPT], [G1]).
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8) Let G be a group acting freely and cocompactly on a simplicial complex K̃ of

non-positive curvature. Then there exist unique geodesic arcs between points of K̃,
and a finite sided fundamental domain D for the action of G. Taking as generators
for G the reflections in the sides of this fundamental domain, the Cayley graph of G

is quasiisometric to K̂, with vertices in the interior of the fundamental domain. A
bicombing for the group can be obtained by taking as a representative corresponding
to the image gD of the fundamental domain, a shortest word w = a1 . . . an such
that {a1 . . . ajD | j = 1 . . . n} covers the unique geodesic from the point v ∈ D to
gv ∈ gD. (This is just the construction given by Milnor in [M], previously studied
by Svarc [Sv].)

Notes

1) By an easy induction argument, if σ is a combing, then d(σ(g)(t), σ(h)(t)) <
K1|g−1h|X .

2) Given a combing, we can always alter it on a finite subset, at the expense of
possibly increasing the value of the constant K1. So we may assume, if we wish
that the representative of the identity in a combing is the empty word.

Definition Following Cannon et al. [CEHPT], we say that a group G generated by
the finite set X is (bi-)automatic if it is (bi-)combable with a section σ which is
a regular language in A? (see also [WPT], [BGSS]). (The pair (A, σ(G)) forms an
automatic structure for G.) This definition is equivalent to the definition in terms
of comparator automata for multiplication by generators, by the construction of
the so-called standard automata, and by the fact that automaticity is independent
of the set of (semigroup) generators chosen.

Thus hyperbolic groups, small cancellation groups and finitely generated abelian
groups are bicombable, being biautomatic (see [GS1;2]). The alternating knot
groups are also biautomatic, so that the torus knot groups 〈a, b | ap = bq〉, with p, q
coprime, are bicombable.

Before establishing some of the closure properties of the class of (bi-) combable
groups, we need to prove some lemmas. We first show that the existence of a (bi-
)combing is independent of the set of generators chosen. This proof is virtually
identical to that of the analogous statement for automatic groups (see [CEHPT]).

We now show that the combability properties are quasiisometry invariants (as in
[Gr], [DG],[CEHPT],[Gh]). We recall the definition of a quasiisometry: Let V,W
be metric spaces. A function f : V →W is a (C, ε)-quasiisometry if

for all v1, v2 ∈ V ,

1

C
dV (v1, v2)− ε ≤ dW (f(v1), f(v2)) ≤ CdV (v1, v2) + ε.

Notice that such a map need not even be continuous; consider the quasiisometry
from the reals to the integers given by taking integer part.

Two metric spaces V and W are said to be quasiisometric if there are (C, ε)-
quasiisometries f : V →W and f ′ : W → V such that for all v, v′ ∈ V , w,w′ ∈W ,
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d(f ′ ◦ f(v), v) ≤ C

d(f ◦ f ′(w), w) ≤ C

d(f(v), f(v′)) ≤ Cd(v, v′) + ε

d(f ′(w), f ′(w′)) ≤ Cd(w,w′) + ε.

When considering Cayley graphs of groups, the additive constant ε can be neglected
as we need only establish the conditions of the quasiisometry for the vertices.

Thus Rn and Zn are easily seen to be quasiisometric, and the Cayley graphs of
a group with respect to different finite generating sets are quasiisometric. Also a
group and a finite index subgroup are easily seen to be quasiisometric. The Cayley
graph of a the fundamental group of a closed compact manifold is quasiisometric
to the universal cover of the manifold.

Proposition 1.2.
If ΓX(G) and ΓY (H) are quasiisometric, and G is combable, then H is too.

Proof.
We begin by supposing that Y contains a generator z such that µ(z) = 1.

Let f : ΓX(G) → ΓY (H) and f ′ : ΓY (H) → ΓX(G) be the quasiimetries sat-
isfying the above conditions. Letting A = X ∪ X−1 and B = Y ∪ Y −1, and let
σ : G → A? be a combing with constant K1. We define a section σ′ : H → B? as
follows.

Let σ(g) = a1 . . . an; define σ1(g) = A1 . . . An where Ai is a shortest word
in B? such that f(a1 . . . ai−1)Ai = f(a1 . . . ai) in H. By the conditions on f ,
`(Ai) ≤ C + ε = C ′. Now pad the end of each word Ai with the letter z until
the length is exactly C ′; i.e. replace Ai by Aiz

m where m = C ′ − `(Ai). Call the
resulting word Bi, and define σ2(g) = B1 . . . Bn.

If d(f(g), f(g′)) ≤ 2C + 1, then

d(g, g′) ≤ d(g, f ′ · f(g)) + d(f ′ · f(g), f ′ · f(g′)) + d(f ′ · f(g′), g′)

≤ C + C(2C + 1) + ε+ C = 2C2 + 3C + ε.

The combing condition C1 and induction give that σ(g) and σ(g′) are uniformly
K(2C2 + 3C + ε)-close in ΓX(G). It follows that σ2(g) and σ2(g′) are paths in
ΓY (H) which are at most C ′K(2C2 +3C+ε) apart at points σ2(g)(mC ′) for integer
multiples mC ′, and thus in general are uniformly C ′K(2C2 + 3C) + 2C ′-close.

For h ∈ H, define σ′(h) = σ2(f ′(h)).v(h), where v is the label on some shortest
path in NC(h) from f(f ′(h)) to h; thus `(v(h)) ≤ C.

If d(h, h′) = 1, then d(f(f ′(h)), f(f ′(h′))) ≤ 2C + 1, and so, by the above, σ′(h)
and σ′(h′) are uniformly C ′K(2C2 + 3C + ε) + 2C ′+ 2C close. (The extra 2C is to
take into account the appended words v(h), v(h′), each of length ≤ C.).

Now if there is no word z ∈ Y with µ(z) = 1, adjoin such an element, proceed
as above, then replace every second occurence of z by yy−1 for some y ∈ Y . This
will make words at most 1 out of step with their previous parametrization, so add
2 to the constant of uniformity.

If the combing σ satisfies the condition C2, then in the same way we see that σ′

satisfies the same condition, for some other constant. �
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Any automatic structure (A, L) for an automatic group G gives rise to naturally
to an automatic structure (A, L′) where L′ is a combing, and L′ ⊂ L. In this
case Cannon et al. [CEHPT] have shown that the regular language L′ consists of
quasigeodesics, i.e. there are constants C, ε such that each path w ∈ L′ is a (C, ε)-
quasiisometry of [0, `(w)] to ΓX(G). Clearly this is a short combing. In the case of
combable groups we do not have such a strong restriction on the section.

Proposition 1.3.
1) The free product of two combable groups is combable.
2) The free product of two groups with short bicombings has a short bicombing.
3) The direct product of two groups with short (bi-)combings has a short (bi-
)combing.
4) A retract of a (bi-)combable group is (bi-)combable.

Proof.
1) Let σG : G→ A? and σH : H → B? be combings for the groups G,H . An ele-

ment g ∈ G?H has a unique normal form g = a1b1 . . . anbn. Then the section σG?H :
G ? H → (A ∪ B)? given by σG?H(a1b1 . . . anbn) = σG(a1)σH(b1) . . . σG(an)σH(bn)
is easily seen to be a combing.

2) To obtain a bicombing, we need the condition C3, so that |`(σG(µ(x)a1)) −
`(σG(a1))| is bounded, for x ∈ X.

3) The section σG×H : G×H → (A∪H)? given by σG×H(g, h) = σG(g)σH(h) is a
bicombing, with constant 2 max{KG,KH}. Notice that in order to get the uniform
bound on the distance between the words σG×H((g, h)µ(x)) and σG×H((g, h)) for
x ∈ X, we need the fact that

|`(σG(g))− `(σG(gµ(x))|

is bounded. In other words, the condition C2) is required even to show that the
direct product is combable.

4) Let r : G → H be a retraction of the (bi-)combable group G onto H. It is
clear that a retract of a finitely generated group is finitely generated.

Take as generators for H the set X of generators for G, and define µH(x) =
r(µG(x)). Then σ|H is a bicombing, as r does not increase distance.

Alternatively, select as generators for G the union X ∪ Y , where X is a finite
set of generators for H. Put A = X ∪ X−1, and B = Y ∪ Y −1. Let r : G → H
be the retraction. For each yi ∈ Y let φ(yi) denote a word in F (X) such that
µ(φ(yi)) = r(µ(yi)) in H. Let φ′ : (A ∪ B)? → A? denote the map induced by
the identity on X, and φ on Y . If σ : G → (A ∪ B)? is a (bi-)combing, then
φ′ · σ|H : H → A? is a section, and as in lemma 1.1, this section can be made
into one which is a bicombing. To do this, let N be the length of the longest
element φ(yi). Read along a word φ′(σ(h)) omitting subwords φ(yi) until more

than N − 1 letters have been omitted (i.e. until
∑J
i=1 `(φ(yi)) > N − 1). Include

the following subwords φ(yi) until fewer than N letters have been omitted (i.e. until∑J
i=1 `(φ(yi)) −

∑J ′

j=J+1 φ(yi)) < N). Continue in this way. The words obtained

form a bicombing with constant K + N
2 . �

Questions Is every combable group bicombable? Is a finite extension of a bicombable
group bicombable? Is a free product of two bicombable groups amalgamating a
finite subgroup bicombable?
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Proposition 1.4.
The amalgamated product of combable groups amalgamating a finite subgroup is

itself combable.

Proof. LetG = A?CB, with C finite. By the normal form theorem for amalgamated
products, we can write each element of the product in the form g = a1b1 . . . anbnc
where ai ∈ S, bi ∈ T where S and T are transversals for C in A and B respectively.
We choose as generators for G the entire set C, together with a finite set XS

(resp. XT ) of elements of S (resp. T ) to give a set of generators for A (resp.
B). Let σA and σB be combings with respect to these sets of generators. Set
σ(g) = σA(a1)σB(b1) . . . σA(an)σB(bn)c. This is easily seen to be a combing, as for
each c ∈ C, and each generator s ∈ XS , there is a word w(c, s) ∈ F (XS ∪ C) and
an element c′ ∈ C such that µ(cs) = µ(w(c, s)c′). Similarly for multiplication on
the right by en element of XT . The constant for the combing depends thus on the
maximum length of the words w(c, s) (and the analoguous words w(c, t)). �
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Section 2 The word and conjugacy problems

We begin by following the proof for automatic groups of the solvability of the
word problem to show that combable groups are finitely presented.

Proposition 2.1. ([CEHPT])
Combable groups are finitely presented.

Proof. Let σ : G→ A? be a combing for the group G.
In order to decide whether a word w = b1 . . . bn ∈ F (X), bi ∈ X∪X−1 represents

the trivial element of G, we show how to obtain the representative σ(b1 . . . bj+1)
from σ(b1 . . . bj). As these two words are uniformly K close, there is a sequence of
words vt such that

µ(σ(b1 . . . bj+1)(t)) = µ(σ(b1 . . . bj)(t)vt)

where in addition `(vt) < K for all t. This means that there is a sequence of words
r1, . . . , rs and p1, . . . , ps ∈ F (X) with `(ri) ≤ 2K+2, µ(ri) = 1, pi = σ(b1 . . . bj)(i),

σ(b1 . . . bj)bj+1σ(b1 . . . bj+1)−1 =

N∏

i=1

pirip
−1
i ,

where N = max{`(σ(b1 . . . bj)), `(σ(b1 . . . bj+1))}.

Figure 1
�

We follow some recent ideas due to A. Casson, J. Stallings, S.M. Gersten and
maybe others too (see [S], [G2]), to see that combable groups have a solvable word
problem.

Let P = 〈X | R〉 be a finite presentation for the group G. Let

Rn = SbgpF (X){uru
−1 | `(u) ≤ n} .

Definition
We say that the function f : N → R is an isodiametric function for P if for all

w ∈ F (X) such that µ(w) = 1 in G, we have

w ∈ Rf(`(w)).
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An alternative formulation due to S. M. Gersten [G2] is to consider van Kam-
pen diagrams for w = 1 in G. The 1-skeleton of such a diagram maps into the
Cayley graph ΓX(G) in such a way that the boundary is the path w. Then f is an
isodiametric function if there is a diagram for w = 1 such that each vertex on the
diagram is at distance at most f(`(w)) from the base point.

When f is a linear function, S.M. Gersten has introduced the notation P satisfies
ID?(α) when there is a diagram for w = 1 such that each vertex is at distance at
most α`(w) from the base vertex. Gersten has also obtained the results 2.3 and 2.4
below, and many other interesting results concerning the ID? condition. In particu-
lar he has shown that all compact 3-manifolds satisfying Thurston’s geometrization
conjecture have fundamental groups with linear isodiametric functions.

Proposition 2.2.
Let P be a finite presentation for the group G.
Then P has a recursive isodiametric function if and only if G has a solvable word

problem.

Proof.
Sufficiency: We show that the existence of a recursive isodiametric function

means that we can construct enough of the Cayley graph ΓX(G) to see whether w
does or does not represent the identity element of G.

Let f be a recursive isodiametric function. Construct the finite, labelled tree
which is ball of radius f(`(w)/2) + max `(r) about the origin in the the Cayley
graph of F (X). Write each relation r ∈ R as r′ = r′′; this can be done in a finite
number of different ways. For each word u ∈ F (X) of length at most f(`(w)),
and for each relation r′ = r′′, identify the vertices defined by the paths from the
identity vertex labelled ur′ and ur′′. When this is done, all loops in the Cayley
graph corresponding to relations in Rf(`(w)) have been constructed.

Tracing out the word w on the finite labelled graph we have constructed, a closed
loop is obtained if and only if w represents the trivial element of G.

Necessity: The path corresponding to a word of length at most n lies inside
Bn, the ball about the identity vertex of radius n in ΓX(G). Now solve the word
problem for all words of length ≤ n, and let f(n) = max `(u) where the word u

appears in some term uru−1 in some expression w =
∏
uiru

−1
i for some word w

with µ(w) = 1 and `(w) ≤ N . As there are a finite number of such words, f is
indeed a recursive function, as required. �

Change of generating set will in general alter an isodiametric function, but not by
much as we shall now see. First we define an equivalence relation between functions
by f ∼ g if:

there are constants A,B,C ≥ 0, such that f(t) = Ag(Bt+ C) +Dt+ E.

The following proposition is then not hard to establish:

Proposition 2.3.
Let P = 〈X | R〉 be a finite presentation of the group G.
1) If G is combable, then P has a linear isodiametric function.
2) If H is quasiisometric to G then H has an equivalent isodiametric function.
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3) If G has a geodesic combing with respect to X, then there is a constant d ≤ 0
such that f(t) = t/2 + d is an isodiametric function for P.

Proof. Let σ : G → A? be a combing, with constant K1, and suppose that the
representative of the trivial element is the empty word.

1) Initially let us suppose that the set of relators R contains the set R′ of all
words in F (X) of length at most 2K1+2 which are trivial in G. We use the notation
of the proof of 2.1. There we saw how to express a word w representing the identity
element of G as a product of relators in R. Notice that each relator which occurs
in the diagram for

σ(b1 . . . bj)bj+1σ(b1 . . . bj+1)−1

is at distance at most K1 from a vertex on the path σ(b1 . . . bj−1). Thus each vertex
of the diagram constructed there is at distance at most C ′ = K1(`(w)/2 + 1) + 2
from the boundary, and hence the presentation satisfies ID?(2K1).

If the set R does not contain R′ then it suffices to find a diagram for each element
of R′, using the relators in R. Now add the maximum distance C ′′ of a vertex in
one of these diagrams to the constant C ′ above.

2) Let g be an isodiametric function for ΓX(G). Let f : ΓX(G) → ΓY (H) and
f ′ : ΓY (H) → ΓX(G) be (C, ε)-quasiisometries such that f ◦ f ′ and f ′ ◦ f satisfy
the conditions given before 1.2. Let w ∈ F (Y ) be a word representing the trivial
element of H, which we regard as a path in ΓY (H). Then f ′(w) is a path in ΓX(G),
and has length at most C`(w) + ε. There is a diagram D for the word defined by
f ′(w) and each vertex is at distance at most g(`(f ′(w)) from the base point. We
now map the entire diagram by f to ΓX(G). The loops corresponding to relators of
G map to loops in ΓY (H) whose length is bounded (by C max `(r) + ε) and hence,
as in 1), each such loop bounds a diagram where each vertex is at bounded distance
C ′′ from its base vertex. The word f(f ′(w)) and the word w bound an annular
diagram, which we can regard as consisting of `(w) regions, each of boundary length
1+3C+ε. As before this gives an additive constant C ′′′ for the distance of a vertex
in of some diagram for one of these finitely many regions to some base vertex. Thus
we obtain Cg(Ct+ ε) + Cε+ max{C ′′, C ′′′} as an isodiametric function for H.

3) When the combing is geodesic, it is clear in the proof of 2.1 that each relator
in R′ used in the diagram is at distance at most `(w)/2 from the base vertex, by
travelling along σ(b1 . . . bj).

It follows immediately from 2.2 and 2.3 that:

Corollary 2.4.
The word problem for a combable group is solvable.

A related idea concerns a combinatorial idea of area, developped by Gersten in
[G1].

Definition
We say that f : N→ R is a Dehn function for the finite presentation P = 〈X | R〉

if for all w ∈ F (X) such that µ(w) = 1, we can find pi ∈ F (x), and ri ∈ R, εi = ±1,
and N ≤ f(`(w)) such that

w =
N∏

i=1

pir
εi
i p
−1
i in F (X) .
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Gersten has shown in [G1] that different finite presentations of a group have
equivalent isoperimetric Dehn functions. Quasiisometric groups also have equiva-
lent Dehn functions (a proof can be reconstructed from the proof of 2.3.2 above, or
see [A2], or [Ba]). Gromov [Gr] has shown that hyperbolic groups are characterized
as being those groups which have a finite presentation with a linear Dehn function
(for an alternative proof see the appendix of [GS2]).

Proposition 2.5. (cfr. [CEHPT])
A group which has a short combing has a quadratic Dehn function.

Proof. Let σ be a short combing. Using the notation of the proof of Proposition
2.1,

`(σ(b1 . . . bj+1)) ≤ `(σ(b1 . . . bj)) +K2.

Thus if µ(w) = 1, the word w can be expressed as a product of at most
K2`(w)(`(w)+1)/2 conjugates of the relators ri, where in addition the conjugating
words are of length at most `(w)K2. �

We do not know whether the conjugacy problem is solvable for combable groups
– the result is not know even if one retricts to automatic groups. In [GS2] it is
shown that the conjugacy problem is solvable for biautomatic groups. Similar ideas
as are used there and in [GS1] can be used as follows to show:

Proposition 2.6.
The conjugacy problem for bicombable groups is solvable.

Proof. Let σ : G → A? be a bicombing. Let x, y ∈ F (X) be words representing
conjugate elements of G. Let g be a conjugating element such that gµ(x) = µ(y)g;
we shall show that such a g can be found whose length is bounded by some function
of max{`(x), `(y)}. By the bicombing properties, σ(g) is uniformly K`(x) close to
σ(gµ(x)) which in turn is uniformly K`(y)-close to µ(y) · σ(g) (as σ(gµ(x)) =
σ(µ(y)g)).

Let σ(g) = a1 . . . an. There is thus a sequence x = γ0, γ1, . . . , γn = y of words in
F (X) such that γi = aiγia

−1
i and each `(γi) < K (`(x) + `(y)) = M . Notice that

if γi = γj for some i 6= j, then µ(a1 . . . aiaj+1 . . . an) conjugates µ(x) to µ(y).
If M is the number of elements of G of length at most N , then there is a word

w′ with `(w′) < M such that µ(w′x) = µ(yw′).
It now follows from the solvability of the word problem that the conjugacy prob-

lem is solvable, as given x, y, there are a finite number of words w′xw′−1y−1 to
check. �

Notice that it is not necessary here for the bicombing to be short.
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Section 3 Quasiconvex subgroups

In order to show that the centralizer of an element is a bicombable group in its
own right, we first introduce the definition of a quasiconvex subgroup.

Definition
Let s : G → A? be a section (not necessarily a combing). A subset A of G is

said to be s-quasiconvex if there is a positive constant C such that for all a, b ∈ A,
the path a ◦ s(a−1b) lies in a C-neighbourhood of A in the Cayley graph ΓX(G).
That is, all paths which are in s, between vertices of A, lie close to the subset A.
When A is a subgroup, it suffices to consider paths based at the identity vertex,
and A is an s-quasiconvex subgroup when for all a ∈ A, the path s(a), based at the
identity, lies in a C-neighbourhood of A.

Clearly any finite subset of a group is quasiconvex, as is an subgroup of finite
index.

The concept of subgroups which are quasiconvex with respect to the set of all
geodesics occurs in [Gr]. The definition here is developped in [GS1]. An interesting
exercise for the reader is to show that a subgroup of a finitely generated free group
is quasiconvex (with respect to the bicombing of reduced words in the free basis) if
and only if is also finitely generated.

Lemma 3.1.
Let s : G→ A? be a section of the finitely generated group G. An s-quasiconvex

subgroup of G is finitely generated.

Proof. We shall see that the set B = {h ∈ H | |h|X < 2C + 1} = Y ∪ Y −1 is a set
of semigroup generators for H.

For h ∈ H, write σ(h) = a1 . . . an; for each i, there is a word γi ∈ F (X)
(perhaps many such word exist) such that a1 . . . aiγi represents an element of H,
and `(γi) ≤ C. Thus h = µ(

∏
γ−1
i−1aiγi), where we set γ0 to be the empty word,

and h can be expressed (not necessarily uniquely) as a product of elements of B (of
length `(σ(w)).

Notice that the above proof shows that the subgroup generated by a quasiconvex
subset is finitely generated. However it need not be quasiconvex, as can be seen by
considering Z × Z with the usual combing {xnym}. The one element subset {xy}
is a quasiconvex subset, but does not generate a quasiconvex subgroup.

When the section is in fact a combing, more can be said:
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Proposition 3.2.
If σ : G→ A? is a (bi-)combing, and H is a σ-quasiconvex subgroup, then H is

(bi-)combable.

Proof. Take as set of semigroup generators for H the set B defined above. Each
word σ(h) can be expressed (not necessarily uniquely) as a product of elements of
B of the same length; choose one of these words and call it σ′(h).

For b ∈ B, σ(h) and σ(hµ(b)) are uniformly K(2K ′ + 1)-close in ΓX(G).
This means that, for each t there is a path in ΓX(G) labelled wt from the point

σ′(h)(t) to the point σ′(hµ(b))(t) of length at most K(2C + 3). There are a finite
number of such words wt; let N = max `(σ(µ(w))) where the maximum is taken
over all words w of length at most K(2C+ 3) (if the combing satisfies condition C2
then N ≤ K2(2C + 3)). Then `(σ′(µ(wt))) ≤ N , and so σ′(h) and σ′(hµ(b)) are
uniformly N -close. �

Thus, when σ is a combing, a σ-quasiconvex subgroup is finitely presented. Rips
[R] has shown that there are finitely generated subgroups of (hyperbolic) small
cancellation groups which are not finitely presentable, and also pairs of finitely
presented subgroups which intersect in non-finitely generated subgroups. Thus
there are subgroups which are not quasiconvex with respect to a geodesic combing.
Gromov states that a subgroup of a hyperbolic group which is quasiconvex with
respect to a geodesic combing is also hyperbolic (see [GS1] for a proof). Gromov
also outlines an example of a finitely presented subgroup of a hyperbolic group
which is itself non-hyperbolic. I do not understand the details of this example.

It is further shown in [GS1] that subgroups which are quasiconvex with respect
to a (bi-)automatic structure are (bi-)automatic. The analogue of this result here
is:

Proposition 3.3.
The centralizer of an element in a bicombable group is quasiconvex.

Proof. Let x ∈ F (X), and suppose that gµ(x)g−1 = µ(x), i.e. g ∈ CG(µ(x)).
Suppose σ(g) = a1 . . . an, ai ∈ X ∪X−1. There is a sequence x = γ0, γ1, . . . , γn =
x ∈ F (X) such that µ(x) = giµ(γi)g

−1
i , where gi = µ(a1 . . . ai).

The bicombability condition ensures that we may assume that `(γi) < K`(x) =
K ′′. For each word v ∈ F (X) of length at most K ′′, let ψ(v) be a shortest word
such that µ(ψ(v)vψ(v)−1) = µ(x), if such a word exists. For each of the words γi
occurring above, ψ(γi) exists, and there are a finite number of them.

Then for each i we have that

giµ(ψ(γi)
−1xψ(γi))g

−1
i = µ(x).

This means that the word σ(g) is in a Q-neighbourhood of CG(µ(x)), in the
Cayley graph ΓA(G), where Q is the length of the longest word ψ(γi). �

We can use the same method to show directly that in a bicombable group, the
centralizer of a finite subset is also bicombable. This also follows immediately from

Proposition 3.4. Let σ : G → A? be a section for the group G, and let A,B be
σ–quasiconvex subgroups. Then A ∩B is a σ–quasiconvex subgroup.

Proof. Let g ∈ A∩B. For i = 1, . . . , `(σ(g)), there are elements a(i) ∈ A, b(i) ∈ B,
and γ(i), γ′(i) ∈ F (X) such that γ(i) (resp. γ′(i)) is the label on a path from σ(i)
to a(i) (resp. b(i)), and `(γ(i)) < K1 (resp. `(γ′(i)) < K2).
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To each pair (γ, γ′) of words in F (X) such that `(γ) < K1 and `(γ′) < K2, we
associate a pair of elements (α(γ), β(γ′)) ∈ A×B (if such a pair exists) such that :

i) α ∈ A;β ∈ B
ii) µ(γ)α(γ) = µ(γ′)β(γ′)
iii) the sum of the lengths of α(γ) and β(γ′) is chosen minimal.
(If such a pair doesn’t exist, then associate anything you like, we won’t care in

what follows.)

Now there are only a finite number of pairs (γ, γ′).
For each i therefore, we have

σ(i) = a(i)µ(γ(i))−1 = b(i)µ(γ′(i)))−1.

For each vertex σ(i), the elements α(γ(i)), β(γ′(i)) exist, and there is a bound
on the sum of the lengths.

But

a(i)α(γ(i)) = σ(i)µ(γ(i))α(γ(i)) = σ(i)µ(γ′(i))β(γ′(i)) = b(i)β(γ(i)).

It follows that the path σ never strays more than a distance equal to the num-
ber of distinct pairs of elements in the product of the balls of radius K1 and
K2 in G (bounded by the square of the number of elements in the ball of radius
max{K1,K2}). �

Corollary 3.5.
A) The centralizer of a finite subset of a bicombable group is quasiconvex.
B) The centre of a bicombable group is quasiconvex and in particular is finitely

generated.

The following alternative proof was shown to me by S.M. Gersten. Given a
section σ : G → A?, say that a subset S ⊂ G is σ-prefix closed if for all elements
s ∈ S, all initial segments of σ(s) represent elements of S. For instance the diagonal
∆ is prefix closed inG×· · ·×G for a product section σ×. . . σ. Now the intersection of
a σ-quasigeodesic subgroup and a σ-prefix closed subgroup is σ-quasiconvex. Thus
∆ ∩ (CG(x1)× CG(x2)× · · · × CG(xn)) = CG(x1, x2, . . . , xn)n.

Proposition 3.6. If G has a short combing σ and the normal subgroup N is σ-
quasiconvex, then the quotient group G/N satisfies a quadratic isoperimetric in-
equality.

Proof. Again we use the notation of the proof of Proposition 2.1, where 〈X | R〉
is a finite presentation of G, and σ : G → F (X) is a short combing with constant
K = max{K1,K2}. We suppose in addition that R contains all words in F (X)
of length at most 2K + 2 which represent the trivial element of G. Given a word
w ∈ F (X), where w = b1 . . . bn, bi ∈ X ∪ X−1, there are words σ(b1 . . . bj) which
are K-fellow travellers. Following the proof of 2.1, we see that there are elements
ri ∈ R, and pi ∈ F (X), such that

wσ(w)−1 =

N∏

i=1

pirip
−1
i , N ≤ A`(w)2

for some constant A ≥ 0. But the length of the word σ(w) is at most K`(w). The
quasiconvex subgroup N has a finite set B of generators, which can be represented
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by elements of F (X) of length at most 2C+1, where C is the constant of quasicon-
vexity (by 3.1). Then 〈X | R,B〉 is a finite presentation for the group G/N . With
this presentation, σ(w) is a product of `(σ(w)) ≤ K`(w) elements of B, so that w
can be expressed as a product of at most A`(w)2 + K`(w) conjugates of elements
of R ∪ B, giving a quadratic isoperimetric inequality as required.

It seems hard to find examples of this phenomenum: M. Mihalik has shown that
in a hyperbolic group, an infinite normal subgroup which is quasiconvex has finite
index (see [MSRI, 3.8]). But we do know that the centre of a group is a normal
subgroup, so that:

Corollary 3.7. If G has a short bicombing, and Z(G) denotes the centre of G,
then G/Z(G) satisfies a quadratic isoperimetric inequality.

Clearly finite rank abelian groups, and finitely generated free groups give trivial
examples of this phenomenon The centre of the torus knot group 〈a, b | a2 = b3〉 is
generated by a2, and killing the centre gives the free product Z2 ? Z3.
Question Is the quotient group bicombable? Is the same true for combable groups?

We leave as an exercise for the interested reader the proof of:

Proposition 3.8.
Let σ be a combing for G, and let H be a σ-quasiconvex subgroup.
1) For each m ∈ G, the coset Hm is a σ-quasiconvex subset.
2) If σ is a bicombing, then mH and mHm−1 are also σ-quasiconvex.
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Section 4 Translation lengths

We follow [GS1] in this section, showing how to prove for bicombable groups the
results established there for biautomatic groups.

We define the translation number (or stable length) of an element g ∈ G with
respect to a set of generators X to be

τG,X(g) = lim
n→∞

|gn|X
n

.

As the sequence {|gn|X} is subadditive, the limit exists (see e.g. ???).

Clearly translation length of an element depends on the system of generators
chosen. But it is not hard to show that

Lemma 4.1. ( [Gr], [GS1, Lemma 6.1])

i) If X and Y are finite sets of generators for G, then there is a constant K such
that for all g ∈ G,

1

K
τG,X(g) ≤ τG,Y (g) ≤ KτG,X(g).

ii) τG,X(gm) = |m|τG,X(g)

iii) τG,X(hgh−1) = τG,X(g).

Thus for an element of a finitely generated group, the property of having non-
zero translation length is independent of the finite set of generators chosen. This
property is clearly inherited by finitely generated subgroups. In the reverse direction
we have:

Proposition 4.2.

If H is a subgroup of G, which is quasiconvex with respect to a short combing,
then for h ∈ H, τH(h) 6= 0 iff τG(h) 6= 0.

Proof. Choose a finite set of generators X for G, and let σ : G→ F (X) be a short
combing.

We take as finite set of generators for H the set B given in Lemma 2.6. Each
generator b ∈ B represents an element of G which has length at most 2K + 1 with
respect to X. Thus

|h|X ≤ (2K + 1)|h|B

so that if τG(h) 6= 0 then τH(h) 6= 0.

As σ is a short combing, for any g ∈ G `(σ(g)) ≤ K|g|X , and by proposition 2.7,
there is an induced short combing σ′ : H → B?, with constant K ′ say. Moreover,
`(σ(h)) = `(σ′(h)). We thus have

1

K ′
|h|B ≤ `(σ

′(h)) = `(σ(h)) ≤ K|h|X .

The result now follows. Notice that shortness is required here to get the bounds
on the lengths of representatives. �

We immediately obtain:
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Proposition 4.3. An element of infinite order in a group with a short bicombing
has non-zero translation length.

Proof. The centralizer C(g) of an element g is quasiconvex. The centre Z(C(g)) of
this (bicombable) group is also quasiconvex. Also g lies in a finite index torsion free
subgroup of the finitely generated abelian group Z(C(g)). With respect to a free
basis, non-trivial elements of a finitely generated free abelian group have non-zero
translation length. Thus applying the previous proposition three times gives the
result. �

From this we can deduce, as in [GS1], that:

Corollary 4.4.

Let G be a group with a short bicombing.

1) (see [GS1, 6.8]) If the Baumslag-Solitar group 〈x, y | xypy−1 = yq〉 is a
subgroup of G, then p = ±q.

2) (see [GS1, 6.9] A virtually nilpotent subgroup of G is abelian-by-finite.

3) (see [GS1, 6.12]) A split extension Zn ×φ Z is a subgroup of G only if φ has
finite order.

4) (see [GS1, 6.15]) A finitely generated polycyclic subgroup of G is abelian-by-
finite.

Proof. (Sketch – see [GS1] for details.)

1) This follows as, when p 6= ±q, the translation length of y must be zero by 4.1.
But this contradicts 4.3.

2) If a nipotent group is not abelian-by-finite, it contains elements x, y such that
[x, y] = z has infinite order, x and y commute with z. It follows that [x, y]n =
[xn, y] = [x, yn] (see forinstance Rotman’s booke “The theory of groups” §6.28).
But then it is easy to see that the translation length of z is zero, contradicting 4.3.

3) This is because, for x ∈ Zn, φm(x) is conjugate to x, and hence the translation
length is fixed, and so φ has finite order on the generators of the Zn factor.

4) A polycyclic subgroup H has a finitely generated free abelian normal subgroup
A. The natural map from H/A to Aut(A) is a finitely generated torsion group, by
part 3), and hence finite. Thus H contains a subgroup of finite index which is
a direct product of the free abelain group A, and another group H1. Now use
induction on the Hirsch number, to see that H is a finite extension of an abelian
group, as required.

The following application of these ideas is due to S.M. Gersten, to whom I am
gateful for giving permission to reproduce his results here. What follows is taken
from a letter of his dated 6th November.

Theorem 4.5. (Yau [Y])

If M is a compact Riemannian manifold of non–positive curvature, then every
abelian subgroup of the fundamental group of M is finitely generated.

This result has the corollary that every solvable subgroup of the fundamental
group of M has a finitely generated abelian subgroup of finite index (using struc-
ture theorems of Mal’cev) and hence is a so-called Bieberbach group. (Yau also
attributes this to Gromoll and Wolf.)

To prove the theorem we need the following
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Lemma 4.6. If A is a torsion free abelian group of finite rank which is not finitely
generated, then A \ {0} ⊂ Rn contains a sequence which converges to zero in Rn,
and hence the set of norms of elements of A contains 0 as a limit point.

The following elegant proof is due to J. Stallings. If the origin is an isolated point
of A, then it follows that Rn/A is a compact Hausdorff manifold, so its fundamental
group is finitely generated.

Proof of Theorem 4.5. (Gersten)
As noted earlier, G := π1(M,?) has a short bicombing. This uses the fact that

geodesics in M̃ , the universal cover of M , beginning at the same point diverge at
least as fast as Euclidean geodesics, together with the proof of the result (originally
due to Svarc [Sv] – see also Milnor [M]) that the Cayley graph of G can be mapped

to M̃ in a quasiisometric manner. By 4.3, the translation number does not vanish
on elements of infinite order.

Next one uses the fact that the Riemannian translation length function τRiemann
on G is equivalent to τX (as defined before Proposition 2.3; this is proved in the
appendix to [GS1]. Recall that the Riemannian translation length function at g ∈ G
is the translation length along a g-invariant geodesic in M̃ , or what comes to the
same thing, the length of a periodic geodesic in M in the free homotopy class of g.

Suppose now that A < G is a non finitely generated abelian subgroup. Observe
that A is torsion free and of rank at most the dimension of M ; this follows since M
is a space of type K(G, 1). If we consider τX restricted to A and use Lemma 4.6,
we see there is a sequence of elements an ∈ A \ {0} with τX(an)→ 0 as n→∞. It
follows that τRiemann(an)→ 0 also.

But this means there is a sequence of non trivial periodic geodesics in M with
lengths tending to zero. This is absurd, since there is a positive lower bound for
the lengths of such geodesics, the systole of M . This completes the proof of the
theorem.

Remark. (Gersten) One would like to be able to show that τX(G) is discrete at 0
without recourse to Riemannian geometry, assuming that G is bicombable. If this
were the case, it would follow that every torsion free finite rank abelian subgroup
of a bicombable group was a lattice (∼= Zn).
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[[Gr]]M. Gromov, Hyperbolic groups, Essays in Group Theory, M.S.R.I. series vol.8, edited by S.M.

Gersten,, Springer–Verlag, pp. 75–263.
[[GS1]]S. M. Gersten and H. Short, Rational subgroups of biautomatic groups, To appear in Annals

of Math..
[[GS2]]S. M. Gersten and H. Short, Small cancellation theory and automatic groups, to appear in

Invent. Math..
[[M]]J. Milnor, A note on curvature and fundamental group, J. of Diff Geom 2 (1968), 1–7.
[[MSRI]]J. Alonso, T. Brady, D. Cooper, T. Delzant, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro,

H. Short, Notes on Negatively curved groups, Notes on seminar held at during spring 1989,
MSRI preprint 08023–89, Mathematical Sciences Research Institute, Berkeley, California.

[[S]]J. Stallings, Casson’s idea about 3-manifolds whose universal cover is R3, preprint, 1990.
[[Sv]]Svarc A.S., A volume invariant of coverings, (Russian), Dokl. Akad. Nauk. SSR 105 (1955),

32–34.
[[R]]E. Rips, Subgroups of small cancellation groups, Bull. London Math. Soc. 14 (1982), 45–47.
[[WPT]]W. P. Thurston, Groups, tilings, and finite state automata, Lecture notes from Boulder Col-

orado, August, 1989.

[[Y]]S.T. Yau, On the fundamental group of compact manifolds of non-positive curvature, Annals
of Math 93 (1971), 579–585.


