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Abstract

We show that the Wirtinger presentation of a prime alternating link
group satisfies a generalized small cancellation condition. This gives
a simplification of Weinbaum’s solution to the word and conjugacy
problems for these groups, which extends to finite sums of alternating
links.

1 Introduction
To show that the group of a prime alternating knot has solvable word and
conjugacy problems, C.M.Weinbaum ([14], see also Lyndon and Schupp’s
book, [7, Chapter V]) showed that the Dehn presentation obtained from a
elementary alternating projection of the knot verifies the small cancellation
conditions C(4)− T (4). Groups with such presentations have solvable word
and conjugacy problems. Howerever the group presented is a free product
of the knot group and an infinite cyclic group, which implies some technical
detours in order for the solutions in the free product to give solutions in the
knot group factor. Subsequently Appel and Schupp [2] extended the Dehn
presentation method to all alternating knots, and Appel [1] used the usual
Wirtinger presentation of the knot group and adapted the small cancellation
methods to extend the result to some classes of non-alternating knots, “with
considerable additional machinery”.

A solution for the word problem for all knot groups was given by Wald-
hausen in 1968, and in 1993 Sela [11] solved the conjugacy problem for all
knot groups. An alternative approach is given in [3, II.5.35], where it is shown
that alternating link groups are groups of compact 2–dimensional piecewise–
Euclidean 2–complexes of non–positive curvature (and mentioned that all
link groups are fundamental groups of non–positively curved spaces).

The Wirtinger presentation, as Appel noted, does not verify any classical
small cancellation conditions, but we shall show here that it does satisfy the
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conditions of a recent version of small cancellation theory, due to Gromov (see
[5]) and Ollivier (see [9]) using graphs. The usual combinatorial arguments
of classical small cancellation theory then give solutions to the word and
conjugacy problems, and an additional observation extends the result to all
finite sums of alternating links.

We begin by defining the presentation associated to a finite, labelled,
oriented graph Γ, such that the generators are the labels on the edges, and
the relators are the words read on the cycles of Γ. We describe Gromov–
Ollivier’s method of subdividing van Kampen diagrams into subdiagrams we
call “megatiles” and consider small cancellation conditions on the graph pre-
sentation, which induce combinatorial restriction on the megatile diagrams.
The usual small cancellation arguments then bound the number of megatiles
in terms of the length of the boundary of the diagram, and an elementary
lemma (see [9]) shows that each megatile satisfies an linear isoperimetric
inequality. The solution of the word and conjugacy problems then follows.

In section 4, we apply the graph presentation method to prime alternating
links. We use an elementary alternating projection (as in [14], as described
in [7, Chapter V.8]), to obtain a dual graph whose group is the link group,
and observe that this graph satisfies a CO(4) − TO(4) condition (analagous
to the C(4)− T (4) condition used by Weinbaum).

Summarising, we obtain:

Theorem A. Let L be a tame link in S3, and let P (L) be an elementary
projection. Let Γ be the dual graph of P (L), labelled by the Wirtinger (over-
crossing) generators, and let G(Γ) be the associated group.

Then G(Γ) is the group of the link, i.e. is isomorphic to π1(S3 − L).
If P (L) is an elementary alternating projection, then:

G(Γ) satisfies the small cancellation conditions CO(4)− TO(4).
The shortest relation in the generators has length 4.
The group has solvable word and conjugacy problems.

The groups of sums of such links can be obtained from disjoint unions
of the graphs of the summands, in such a way that they also satisfy the
CO(4)−TO(4) condition, expressing the group of the sum as an amalgamated
product along a meridian subgroup. Thus we obtain in section 5:

Theorem B. Groups of finite sums of alternating links have graph presen-
tations satisfying the conditions CO(4) − TO(4), and so have solvable word
and conjugacy problems.
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Note that such sums can be non–alternating. Note also that all the gen-
erators of the group G(Γ) are meridians, and so if the alternating projection
contains at least one crossing, the shortest relation has length 4, and the
group is not cyclic (see also [8]) (else all the meridians would be equal, im-
plying relations of length 2). With a little more work, one can show that
prime alternating link presentations with at least one crossing correspond
to non-trivial links, as they contain commuting elements without common
powers.

We end with some observations on the complexity of the solutions, OR
NOT, AS THE CASE MAY BE.

Most of the results presented here appear in the thesis [4] of the first
author. We would like to thank François Dahmani and Paul Schupp for their
comments on the thesis, and the referee for his/her helpful remarks, which
have significantly improved our presentation.

2 Graph presentations, diagrams, megatiles
We summarize here some basic definitions and properties of presentations,
van Kampen diagrams and small cancellation theory from this new viewpoint:
for more details, see [9] and [4].

Throughout, Γ will be a finite, oriented, not necessarily connected graph.
The (oriented) edges of Γ are labelled by letters, which form a set S. The
same label will usually occur on several different edges. We shall suppose
that Γ is reduced: at each vertex v of Γ, and for each label a ∈ S, there is at
most one oriented edge beginning at v labelled a, and at most one oriented
edge labelled a terminating at v. This means that there is no path in Γ
labelled aa−1 or a−1a with a ∈ S (other than a round trip up and down a
single edge). We also suppose that Γ has no redundant cycles, i.e. Γ does
not contain two distinct cycles with the same label.

The group G(Γ) associated to Γ is the free group F (S) on the set of labels,
quotiented by the normal subgroup N normally generated by the words on all
the cycles of Γ. Any choiceRΓ of labels on a finite set of cycles in Γ generating
H1(Γ) gives a finite presentation 〈S | RΓ〉 of G(Γ). For instance for RΓ we
can take labels on a basis (or generating family) of cycles (immersed circles)
or circuits (embedded circles) of Γ. An example is given in figure 2 below.
Another possible choice for RΓ is the set of all labels on cycles of length at
most k.diam(Γ), for any k ≥ 2.
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Classical small cancellation theory for a finite presentation 〈S | R〉 uses
conditions on the length of a piece relative to the lengths of relators contain-
ing it, where a piece is a common initial subword of two distinct elements of
RC , the set of all cyclic conjugates of elements of R ∪ R−1. In the “graph
small cancellation theory” used here, a piece relative to the labelled graph Γ
is defined as follows:

Definition 1. A piece is a word labelling two distinct paths immersed in Γ.

For a finite presentation 〈S | r1, . . . , rn〉, form a graph consisting of n
disjoint loops Li, subdivided into |ri| edges, oriented and labelled so that the
word read from a suitable base point is the word ri. As usual, |w| denotes
the length of the word w (in the free group or semigroup F (S), according to
the context). With this graph, the two concepts of piece coïncide (if no ri is
a proper power).

A simple example illustrates the difference between the two approaches.
In classical small cancellation theory, in the presentation P = 〈a, b, c |
ba−1, bc−1〉, b is a piece of length 1, and has half the length of the rela-
tors containing it. Let Γ be a θ−curve — two vertices joined by three edges,
labelled by a, b and c. As each of a, b and c has an unique immersion in Γ,
there is no piece in Γ. It is clear that P is a presentation for G(Γ).

A (van Kampen) diagram over a finite presentation P = 〈S | R〉 is a
finite, planar, connected, simply connected 2-complex D, with oriented edges
labelled in S, such that the boundary of each bounded face is labelled by a
word of R (up to cyclic permutation and inversion). The label on the outer
boundary (the boundary of the complement of D in R2) is a word w in the
free semigroup on S ∪ S−1. We also say that D is a diagram for w over P
(see for instance [7, chapter V] or [12] for more about diagrams). A diagram
for w is minimal if all other diagrams for w have at least as many faces. Van
Kampen proved (see [13]) that every word w in 〈〈R〉〉 has a diagram over P .
We define the area of w ∈ 〈〈R〉〉, AreaP(w), to be the number of 2–cells in a
minimal diagram for w over P . We say that the presentation satisfies a linear
(quadratic, cubic, exponential, recursive) isoperimetric inequality if there is
a linear (quadratic, cubic, exponential, recursive) function fP : N→ R such
that Area(w) ≤ fP(|w|). A standard result of this domain is that the word
problem of a presentation is solvable if and only if it satisfies a recursive
isoperimetric inequality (see for instance [12, Thm 1.1 ]).

For the graph Γ, we fix a finite set of labels RΓ on cycles generating
H1(Γ). Let D be a minimal diagram over the finite presentation 〈S | RΓ〉
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of the group G(Γ). Each face F of D is labelled by a word r ∈ RΓ. The
word r is the label on a unique cycle c in Γ (uniqueness follows from the
non–redundancy of Γ). There is thus a simplicial immersion from ∂F to Γ:
we say that ∂F lifts to Γ.

Definition 2. Let F1, F2 be two faces of D, and let e be an edge in the
intersection of their boundaries in D. Let φi : ∂Fi → Γ, i = 1, 2 be lifts of the
boundaries of the two faces. We say that e is an edge originating from Γ
if the images of the two lifts φ1(e), φ2(e) of e to Γ are the same edge of Γ.
The two faces F1 and F2 are said to be Γ-adjacent.

The reflexive and transitive closure of the Γ-adjacency relation is an equiv-
alence relation. Each equivalence class gives rise to a megatile M as follows:
there is a closed 2–cell for each face in the equivalence class, and the edges
originating from Γ common to Γ-adjacent faces are identified.

Seen as an abstract complex, each megatileM has a boundary ∂M , which
is a not necessarily connected 1-complex. The rule for identifiying edges of
faces in M means that the 1-skeleton of M lifts to Γ, and in particular each
component of ∂M lifts to Γ. There is obvious map from M to D. Notice
that edges of ∂M do not originate from Γ, and distinct edges in ∂M may be
identified in D (see figure 1). That is, M is not necessarily homeomorphic
to the closure of the open faces of D which make up M . In figure 1, the
lower-left megatile M of D is a disc, with boundary ∂M a circle, but the
closure of M in D is an annulus.

This notion of megatile is implicitly used in [9] (where faces are called
“tiles”). Notice that each face of a minimal diagram belongs to one and only
one megatile, and that a megatile of a minimal diagram D is not necessarily
simply connected (see the figure 1). We shall give conditions below (theo-
rem 9), that will ensure that each megatile of a minimal diagram is simply
connected (two megatiles of figure 1 are impossible under these conditions).

The megatile diagram of D, denoted by D′, is the 2-complex, unique by
construction, built from D, by deleting open edges of D originating from
Γ and vertices of D meeting only such edges (see figure 1). Each megatile
naturally maps to a face of D′, which, abusing language, we shall continue to
refer to as a megatile. As is common in these diagrams, we supress vertices
of degree 2 (see [7] p 242). In a diagram D for a cyclically reduced word, we
can distinguish a D-edge, which is an edge of D labelled by a generator in S
(or its inverse), and a D′-edge, which is an arc of the megatile diagram D′ of
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Figure 1: Megatile diagram of a diagram D

D, labelled by a word (as vertices of degree two have been supressed). The
endpoints of a D′-edge have degree at least 3 in D′.

We repeat that the important property of megatiles is that they are in-
tuitively maximal lifts of the one-skeleton of D to Γ, and for each megatile
M , every component of ∂M lifts to a cycle in Γ.

3 Results in graph small cancellation theory
As usual, Γ is a finite, labelled, oriented graph (not necessarily connected)
satisfying the conditions given earlier. We give two important lemmas about
megatiles. The first one comes from [9]:

Lemma 3. Let RΓ be a finite set of labels for some generating set for H1(Γ).
There is a constant C > 0 such that for any label w on a cycle in Γ, there is
a diagram for w = 1 over 〈S | RΓ〉 of area bounded by C|w|.

Proof. Let µ = max{Area(w) | |w| ≤ 3∆, w labels a cycle in Γ} where ∆ =
max{d(x, y) | x, y in the same component of Γ} is the diameter of Γ.

If |w| > 3∆ then w = w1w2, where |w2| = 2∆. The endpoints of w2 in Γ
are in the same component, at distance at most ∆, so there is a path in Γ of
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length at most ∆ joining them, with label w′ say, such that w2w
′ = 1 in G(Γ)

and there is a diagram D′′ for w2(w′)−1 = 1 of area at most µ. By induction
there is a diagram D′ of area at most C|w1w

′| for w1(w′)−1 = 1, and so there
is a diagram D for w1w2 = 1 obtained by identifying the segments labelled
w′ of the boundaries of D′ and D′′. Thus Area(D) = Area(D′) + Area(D′′)
and

Area(D) ≤ C(|w1|+ |w′|) + µ ≤ C|w1|+ C(|w2| −∆) + µ

which is less than C|w| if C∆ > µ ⇐⇒ C > µ
∆
.

If M and M ′ are two megatiles of the megatile diagram D′ coming from
a diagram D over a finite presentation for G(Γ), each arc of ∂M ∩ ∂M ′ is a
piece (not necessarily maximal, i.e. included in a longer piece of Γ). As the
boundaries of megatiles lift to cycles in Γ, we have:

Corollary 4. Simply connected megatiles satisfy a linear isoperimetric in-
equality.

Here the length of the boundary of a megatile can be measured either
in F (S) or in terms of pieces, at the expense of changing the constant by a
factor (the maximal length of a piece).

Definition 5. We say that the graph Γ verifies the CO(p) condition when no
cycle of Γ can be decomposed into fewer than p pieces (with disjoint interior).

Let q ≥ 3. We say that Γ verifies the TO(q) condition when: if there
are h (3 ≤ h < q) paths (of length 2) in Γ labelled p1p

−1
2 , p2p

−1
3 , ..., php

−1
1 ,

with p1, p2, ..., ph generators (or their inverses, and pi 6= pi+1 (mod h) as Γ
reduced), which lift to Γ, then the h paths have the same vertex of Γ as their
midpoint.

These last technical definitions imply more simple and convenient prop-
erties. A megatile (resp. vertex, or edge) of a diagram D is internal if its
intersection with the boundary ∂D contains no edge (resp. is not in ∂D).

Properties 6. Let D be a minimal diagram over Γ for some choice R of
relators, and let D′ be the megatile diagram of D. Then:
If Γ satisfies CO(p), the boundary of each internal simply connected megatile
M of D′ is composed of at least p D′-edges.
If Γ satisfies TO(q), the degree of each internal vertex of D′ is at least q.
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Following [7], a connected planar complex such that all faces are simply
connected, is a (p, q) map if every internal face has degree at least p, and
every internal vertex has degree at least q. We are concerned with (4, 4)
maps here, and the essential property used is that such maps contain faces
with 2 or 3 edges, one of which is necessarily a boundary edge.

If γ is a path in the 1-skeleton of a 2-complex, then we denote by `(γ)
the number of edges traversed by γ (counted with multiplicity).

Lemma 7. Let Q be a (4, 4)-map without vertices of degree 2 which is a
topological disk.

The number of faces is at most 4`(∂Q)2, and the number of edges in Q is
at most 3 times the number of faces.

Proof. The results hold if Q has just two faces, so suppose that Q has at
least 3 faces.

The first inequality is well–known, and follows for instance from the Area
Theorem [7, V.6.2] (and is stated in the proof of V.6.3).

To prove the second, note that Q contains a face F with 2 or 3 sides,
i.e. a face with just one edge f on the boundary, and 1 or 2 internal edges.
Removing the boundary edge f , and suppressing if necessary any vertex of
degree two which arises (there can be at most two), gives a map Q′, with one
less face, and either one, two or three fewer edges.

If the face F has 2 edges, then Q′ is also a topological disk, and the result
follows by induction on the number of faces.

If the face F has 3 edges, then it is possible for Q′ to be two topological
discs joined at a vertex. Using induction as before and summing over the
two disk components, the result follows.

This result generalises to maps which are not topological disks:

Lemma 8. Let Q be a (4, 4)-map (with no vertices of degree 2).
The number of faces is at most 4`(∂Q)2, and the number of edges in Q is

at most 13`(∂Q)2.

Proof. If Q is not a topological disc, it consists of a collection of topological
disks joined in a tree-like manner. The edges joining the disk components of
Q are counted in `(∂Q), but do not contribute to the area, so the first part
follows.
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For the second part, the previous result gives the number of edges in each
disk component, and then adding `(∂Q)2 ≥ `(∂Q) takes into account the
edges joining the disk components.

Theorem 9. Suppose Γ satisfies CO(4)− TO(4).

1. If D is a minimal diagram over Γ (for some choice of relators RΓ),
and D′ is the megatile diagram of D, then each megatile of D is simply
connected, and D′ is a (4, 4) map.

2. The group G(Γ) satisfies a quadratic isoperimetric inequality.

3. The word and conjugacy problems are solvable for G(Γ).

Analogous results can be proved for the CO(6) and CO(3)− TO(6) cases.

Proof. 1. Recall that D is a simply connected planar complex, and so is the
megatile diagram D′. If the megatiles of D′ are simply connected, then as
noted above the properties CO(4)− TO(4) ensure that D′ is a (4, 4) map.

Suppose that there are non–simply connected megatiles in D′. In the
complement of the non–simply connected megatiles of D′, let D′′ be an in-
nermost topological disk. Let M be the non-simply connected megatile such
that ∂D′′ is a connected component of ∂M . The megatiles in D′′ are all
simply connected, by the innermost property, so that the megatile diagram
contained in D′′ is a (4, 4) map. The essential property of (4, 4) maps is
that there is a face with at most 3 edges, necessarily having one edge on the
boundary. This means that there is a megatileM ′ in D′′ meeting ∂M ⊂ ∂D′′

in an arc which is strictly longer than a piece, so that M ′ and M contain
in their common boundary a segment with a unique lift to Γ. Thus the lift
of M to Γ extends to M ′, and M and M ′ form part of the same megatile,
giving a contradiction.

2. Choose a finite set of relators RΓ giving a presentation P = 〈S | RΓ〉
for the group G(Γ). We show that P satisfies a quadratic isoperimetric
inequality; changing to another finite presentation merely changes the con-
stants involved. Let w be a cyclically reduced word in the generators which
is a relation, and let D be a minimal diagram for w = 1 over P . By part
1, the megatile diagram D′ obtained from D is a (4, 4) map without ver-
tices of degree 1 or 2. By Lemma 8, the number of faces in D′ is at most
4`(∂D′)2 ≤ 4|w|2, and the number of D′-edges is at most 13|w|2. Each face
of D′ corresponds to a megatile M , and each diagram on a megatile M ,
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D∩M , satisfies a linear isoperimetric inequality, Area(D∩M) ≤ C.`S(∂M)
(by Lemma 3 ). Here `S(∂M) denotes the length of the word labelling the
boundary of the subdiagram D ∩M in the megatile M , and `(∂M) is the
number of D′-edges in ∂M .

Summing over the diagrams in each megatile:

Area(D) =
∑

Mmegatile of D′

Area(D ∩M) ≤
∑
M

C.`S(∂M) = C
∑
M

`S(∂M)

This sum is at most twice the number of D′–edges (internal edges are counted
twice) in the megatile diagram, but measured in the originalD–lengths. Each
edge of D′ is either an internal edge, and therefore a piece, or is contained
in the boundary of D′. There are a finite number of pieces in Γ, so there
is a maximal length of a piece, say ρ. The length of the boundary of D′ is
bounded above by |w|, the length of the boundary of D.

Seperating the edges of ∂M into those that are internal in D′, and those
that lie on ∂D′, we see that:∑

M

`S(∂M) ≤ 2
∑

e internal D′−edge

`S(e) +
∑

f edge in ∂D′

`S(f)

The number of D′–edges is at most 13`(∂D′)2 ≤ 13|w|2. Thus∑
M

`S(∂M) ≤ 26ρ|w|2 + |w| ≤ 27ρ|w|2

and the quadratic isometric inequality is established.
3. Having a recursive isoperimetric inequality is equivalent to having a

solvable word problem. The fact that the megatile diagrams are (4, 4)–maps
can then be used to solve the conjugacy problem, as in [7, V.7.4].

4 Application to prime alternating link groups
a. Construction of a link graph

One considers an oriented link L embedded in S3 and a regular projection
P (L) of this link. As is usual, each double point of this projection, two oppo-
site germs of the arcs are identified to signify the presence of an overcrossing
and an undercrossing.
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One orients and labels each overcrossing arc (of each component) between
two crossings of this projection (in the same sense) by a generator; these
generators correspond to those of the Wirtinger presentation. To obtain the
Wirtinger presentation of the link group, a relator of length 4 is found at
each crossing (see for instance [10] pp 56-59). The graph Γ(L) (or simply Γ)
of the link is obtained by duality from the regular projection. To each open
and connected region R of the regular projection, we associate a vertex v(R)
of the graph and to each arc of the regular projection separating two regions
R1, R2 we associate an edge of the graph joining the vertices v(R1), v(R2)
transverse to the arc. One then agrees on a rule for the labelling and the
orienting of the graph:

If one imagines the link projected onto the graph, seen from above, and
if one follows each component of the link in the positive sense, one labels
each edge of the graph by the same generator which labels the transverse
overcrossing arc of the link, oriented, by convention, from left to right.

At each double point of the regular projection (a double point corresponds
to an overcrossing of the link projection), there is in general a circuit of length
4 in Γ, where one generator conjugates another to a third. This is a Wirtinger
relator (see [10] p 56-59).

An example of this construction is given in figure 2.

Figure 2: Graph associated to (the regular projection of) the figure eight
knot giving P (Γ) = 〈a, b, c, d | bcb−1d−1, cac−1d−1, dad−1b−1〉, when RΓ is
chosen to be the set of labels on circuits of length 4, one for each of three of
the four overcrossings. See [10] page 58 where x1 = b, x2 = a, x3 = d, x4 = c.

If there is a component of the link projection which is a circle with no
crossings, then the link splits, and the group has a free cyclic factor. This
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means that some labels do not appear in relators obtained from cycles in
the graph Γ. As the group of a split link is a free product of non–split link
groups, and the solutions of the word and conjugcay problems in the factors
give solutions in the free product, we can assume that the links concerned
are non–split and non–trivial.

b. Word and conjugacy problems
Following [7, V.8.2] it is easy to see that a prime alternating link has

an alternating projection that is elementary: each double point is on the
boundary of four distinct regions, and that no two regions have two edges in
the intersection of their boundaries. For the latter, note that if there were
two such edges, then there is an embedded S1 in the plane, meeting the link
projection in two points; and the link is not prime (if the other condition
holds); see figure 3.

Figure 3: Two regions meeting in two arcs means non–prime

Theorem 10. Let Γ be the graph associated to an elementary alternating
link projection P (L) as above. Then:

Γ satisfies the small cancellation conditions CO(4)− TO(4).
A suitable choice of RΓ gives the Wirtinger presentation of the link group.

Prime alternating links have elementary alternating projections, so:

Corollary 11. Groups of prime alternating links have solvable word and
conjugacy problems.

Proof In the graph obtained from an alternating projection, each gener-
ator occurs exactly twice, on the two edges corresponding to an overcrossing.
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More precisely, as in figure 4, the two edges labelled a in the graph Γ,
occur in a cycle of length 4, are separated by two other edges and have
opposite orientation (in this cycle).

Figure 4: Each generator occurs exactly twice in the link graph (and once
in each of two other circuits of length 4), in the same cycle of length 4,
“alternately” and with opposite orientation.

We see easily that the only possible pieces are of length 1. Indeed, the
only way to have a piece of length 2 in the graph is shown in figure 5 and
this implies that the link is not alternating.

L

tangle a
b

b

aa

Figure 5: Piece of length 2 in the graph

For example, in the graph of the figure eight knot (figure 2), one can read
the words a−1b (or b−1a) and ba (or a−1b−1) in the graph in just one place,
and no word a±1b±1 appears elsewhere in the graph. In this example it is
clear that all the cycles of Γ are of length at least 4.

In general, the regular projection of a link L gives a checkerboard decom-
position of the plane, so that the dual graph Γ is a bipartite graph. Therefore
the cycles of Γ have even length (each cycle passes alternately from a black
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region to a white region and so on). When the projection is elementary, there
are no cycles of length 2 in Γ, and when the projection is alternating, there
are no pieces of length 2. Thus no cycle in Γ can be decomposed into less
than 4 pieces, and the CO(4) condition holds.

TO(4) condition:
With the convention of erasing vertices of degree 2 in diagrams (see [7]

p 242), we must verify that in a minimal diagram D over Γ, every internal
vertex of degree 3 is internal to a megatile of D.

In the example of the figure eight knot, we just list all possible configu-
rations of vertices of degree 3 to realise that this is the case.

For the general case, let v be a vertex of degree 3, internal to D′′, the
subdiagram of D composed of three faces Fab, Fbc and Fac of Γ ({v} =
∂Fab ∩ ∂Fbc ∩ ∂Fac). We use the notations of figure 6.

Figure 6: Vertex of degree 3 in a minimal diagram

Case 1: at least one of the three edges a, b, c at v originates from Γ.
Without loss of generality, suppose the edge is labelled b, then (Fab, Fbc) is (or
is included in) a megatile of D and the tripod (a; b; c) of vertex v lifts entirely
to Γ (with the vertex v). As ac−1, of length 2, is not a piece, the boundary
of the face Fac lifts together with the unique lift of the path labelled by this
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word in Γ. It follows in this case that D′′ is contained in a megatile of D, the
three edges originate from Γ and v is an internal vertex of a megatile of D.
Case 2: none of the edges a, b, c originates from Γ.
Each of the three letters a, b, c has exactly two distinct lifts in Γ.

As the pieces of Γ are of length 1, there cannot be two distinct lifts of
the paths labelled by ab−1, bc−1, ca−1 (or their inverses), so v lifts to Γ as an
internal vertex of each of these three paths.

But a (for example) appears exactly twice in Γ in a circuit of length 4,
with opposite orientations, separated by edges not labelled by a (see figure
4).

We use a colouring argument (see figure 6):
One colours vertices of Γ alternately in black and white (from the checker-

board colouring of the projection). According to the previous remark, the
two initial points (similarly, the two terminal points) of the edge labelled a
have different colours in Γ. Likewise for b and c.

The vertex v (of the figure 6) has three distinct lifts v1, v2 and v3 in Γ. As
the edge of D labelled by a is on the boundary of two megatiles of D, it lifts
necessarily to two different places in Γ. By doing the same with b, then with
c, we get a contradiction on colourations: we have the same colouring for
both initial points of the two distinct edges of the graph labelled by c. This
is impossible. So every internal vertex of degree 3 is included in a megatile.

5 Sums of prime alternating links
The group of the sum of two links is the free product of the two link groups,
amalgamated along a cyclic subgroup generated by a meridian. We show
that the group has a graph presentation obtained from the disjoint union
of graphs for each component, with a slight change in the relabelling. We
show then that this graph satisfies a CO(4)− TO(4) condition when the two
component graphs do.

Let Γ1,Γ2 be labelled graphs, with disjoint sets of labels X1, X2, and
associated groups G1, G2. Suppose that every label in X1 ∪ X2 is a piece,
and choose a1 ∈ X1 and a2 ∈ X2 such that no path in Γi is labelled by a2

i ,
i = 1, 2. Let Γ′2 be the graph obtained from Γ2 by replacing all occurrences
of the label a2 by the label a1.

It is easy to see that the group associated to the disjoint union Γ3 = Γ1tΓ′2
is the amalgamated product G1 ∗Z G2 identifying the generators a and a′.
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Lemma 12.

1. G(Γ3) ∼= G1 ∗a1=a2 G2.

2. If Γ1 and Γ2 satisfy CO(6), (resp. CO(4)) then so does Γ3;

3. If Γ1 and Γ2 satisfy TO(4) then so does Γ3.

Proof. (1) Let Ci be a finite set of cycles generating H1(Γi), for i = 1, 2.
and let Ri be the labels on the cycles of Ci. The groups Gi then have
presentations 〈Xi | Ri〉 for i = 1, 2. As Γ3 is the disjoint unioin of Γ1 and
Γ2, the set R1 ∪ R2 is a finite set of cycles generating H1(Γ1 ∪ Γ2), and
〈X1, X2 | R1,R2〉 is a finite presentation for the group G(Γ1∪Γ2) ∼= G1 ∗G2.
Replacing the label a2 by the label a1 corresponds to Tietze transformations
on the presentation 〈X1, X2 | R1,R2, a1 = a2〉 of the amalgamated product
〈X1 | R1〉 ∗a1=a2 〈X2 | R2〉, to give a graph presentation of G(Γ3).
(2) The words in X1 ∪ (X2 − {a2}) which can label paths in both Γ1 and Γ′2
are powers of a1, the only label occuring in both components. The condition
on the choice of a1, a2 means that no path in Γ3 is labelled by a2

1. Thus the
only new pieces in Γ3 are those from Γ2 obtained by replacing the a2 label by
a1. Thus all pieces satisfy the same CO(6) (resp. CO(4)) condition as before.
(3) The only way for the TO(4) condition to fail in Γ3, while at the same time
holding in Γ1 and in Γ2, would be for the sequence of paths p1p

−1
2 , p2p

−1
3 , p3p

−1
1

in the definition of the TO(4) condition to contain paths in both of the com-
ponents of Γ3, else the condition would fail in the component concerned. But
no path of length two lifts to both components, and no path is labelled a2

1,
so such a non-trivial sequence cannot have length 3.

It is possible to generalise the above result to amalgamate over subgroups
generated by larger sets of elements, but we restrict to this case as it has the
following immediate application:

Corollary 13. The group of a finite sum of alternating links has a presen-
tation satisfying the CO(4)− TO(4) condition, and so has solvable word and
conjugacy problems.
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