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Abstract
This paper deals with the solutions defined for all time of the KPP equation
U = U+ F(U), O<u(xt) <1, (xt)eR?,

wheref is a KPP-type nonlinearity defined @, 1]: f(0) = f(1) =0, f’(0) > 0,

f/(1) <0, f >0in (0,1), and f'(s) < f’(0) in [0,1]. This equation admits
infinitely many traveling-wave-type solutions, increasing or decreasing I

also admits solutions that depend onlytonin this paper, we build four other
manifolds of solutions: One is 5-dimensional, one is 4-dimensional, and two are
3-dimensional. Some of these new solutions are obtained by considering two
traveling waves that come from both sides of the real axis and mix. Further-

more, the traveling-wave solutions are on the boundary of these four manifolds.
© 1999 John Wiley & Sons, Inc.

1 Introduction

Since the pioneering paper of Kolmogorov, Petrovsky, and Piskunov [17], many
works have been devoted to the so-called KPP equation

(1.1) U = U+ f(u), O<u(xt)<l, xeR,tel,

on a given interval of time. The nonlinearityf is such thatf (0) = f(1) =0,
f’(0) > 0, f/(1) < 0, andf(u) > 0 for any O< u < 1. This equation arises in
various biological models for gene developments or population dynamics (see, for
instance, Aronson and Weinberger [1], Barenblatt and Zel'dovich [2], Fife [8],
Fisher [10], Freidlin [11], Rothe [26], and Stokes [28]). Throughout this paper, we
also assume thdtis of classC? in [0,1] and thatf’(s) < /(0) for all s€ [0, 1].

Our goal is to study the classical solutions that are defined for all time, namely,
I =R. We call these solutions “entire” solutions of (1.1).

Problem (1.1) admits solutiongx, t), defined for all time and not depending on
X, that is to say, thai(x,t) = u(t) is a solution of the ordinary differential equation
u(t) = f(u) in R. Itis easy to see that these solutiax($) are increasing irt
and fulfill u(t) — 0 ast — —oo, u(t) — 1 ast — +o0. These solutions(t) form a
1-dimensional manifold, where the parameter can be viewed as a shift in time.

It is well-known that this problem (1.1) also has two 2-dimensional manifolds
of entire solutions of traveling-wave type, namaly, (x,t) = @(x+ ct+ h) and
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Ugh(X,t) = @(—x+ct+h), whereh varies inR andc varies in[c*, 4-oo[ with ¢* =

2,/f/(0) > 0 (see, for instance, Aronson and Weinberger [1], Bramson [5], Fife
[8], Freidlin [11], Hadeler and Rothe [13], Kanel’ [15], Rothe [26], and Stokes
[28]). For anyc > c*, the functiong. satisfiesp! — cq.+ f (@) =0 inR, @(—) =

0 and@:(+) = 1. It is increasing and unique up to translation, and we can then
assume tha(0) = % Furthermore, for ang > c*, there exists a positive constant
A¢ such that

(1.2) (%) = At +o(eF) ast — —w

whereh; = (c—+/c2—4f/(0))/2 > 0. For the minimal speed= c* = 2,/1(0),

it is the case thap (§) = —AgeV" 9% 1 0(eV'"'(0%) for some positive constant
A. As far as the asymptotic behavior @f(§) as& — 4 is concerned, for any
c > c*, there exists a positive constdBy such that

®(&)=1- BegHtt +0(ep°'£) as§ — +oo

wherep; = (c—+/c2—4f/(1)) /2 < 0 (see Berestycki and Nirenberg [3], Bramson
[5], Coddington and Levinson [7], Hadeler and Rothe [13], Kametaka [14], and
Uchiyama [30]).

Many authors have studied the behavior for large time of the solutions of the
Cauchy problem for (1.1) under a wide class of initial conditions. Special attention
has been devoted to the convergence to the traveling waves and the stability of these
waves (Aronson and Weinberger [1], Bramson [5, 6], Freidlin [11], Kametaka [14],
Kanel' [15], Kolmogorov, Petrovsky, and Piskunov [17], Larson [18], McKean
[20], Moet [21], Rothe [27], Uchiyama [30], and van Saarloos [31]). Some of
these results have also been generalized in the multidimensional case in straight
infinite cylinders (Berestycki and Nirenberg [3], Mallordy and Roquejoffre [19],
and Roquejoffre [25]). Equation (1.1) has also been emphasized for a larger class of
KPP-type equations (Biro and Kersner [4], Peletier and Troy [23, 24], van Saarloos
[31], and Zhao [32]), as well as under other restrictions of the fundti(see Rothe
[26] and Stokes [28, 29] i£* > 2,/ f/(0), or Aronson and Weinberger [1], Fife and
McLeod [9], Kanel' [15, 16] iff is of the “bistable” type).

The question of the existence of entire solutions of (1.1) other than the solu-
tions independent of and the traveling-wave solutions is still open. In this paper,
we construct four other manifolds of solutions: One is 5-dimensional, one is 4-
dimensional, and two are 3-dimensional.

Roughly speaking, the way to build the 5- and 4-dimensional manifolds of new
entire solutions is to consider two traveling waves coming from both sides of the
real axis—moving in opposite directions towards each other—and mixing each
other. Each of those traveling fronts is given by two parameters (a speed and a
shift in x). Between these two fronts, whett is large, the solutions can be either
almost uniform inx and equal to a functiog(t) fulfilling & = f(§) (this gives a
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fifth parameter; see Theorem 1.1) or asymptotically small with respect to any such
&(t) (Theorem 1.3).

In order to build new entire solutions that are monotong, ithe idea consists
of slightly perturbating a traveling wave by adding, on the side where the wave is
almost 0, a functio (t) that is a solution of the equatidh= f (). The traveling
wave is given by two parameters, and the functgt) involves one additional
parameter (Theorem 1.4 and Corollary 1.5).

We also prove in this paper that the 4- and 3-dimensional new manifolds, as
well as the traveling-wave solutions and solutioiis, are on the boundary of the
5-dimensional new manifold of entire solutions of (1.1).

In the following theorems, we say that the function$x,t) converge to a func-
tion up,(X,t) asp — po € R" in the sense of the topologdy if, for any compact set
K c R?, the functionsip, Upx, Upxx, @ndup; converge uniformly irk to up,, Up, x,

Upo,xx» @NdUp, t aSp — Po.

THEOREM 1.1 Forany cc > c*, forany hi € R, and for any K> 0, there exists
an entire solution (X,t) = Uc ¢ n k (X, t) of (1.1)such that

(i) Forany(x,t) € R?,

max(qy (—x+c't+h), &(t), @c(x+ct+h))
<u(xt)

(1.3) <min (1, @ (—x+ 't + 1) + Kel O A gheletetH)
Acle}\c/(—x-i-clt-i-h/) 4 Kef’(O)t 4 (pC(X+ ct 4 h)’
Ade)\cl(—x+c’t+h') + E(t) + Acez\c(x+ct+h))

where0 < &(t) < 1is a solution of’(t) = f(§), t € R, and&(t) ~ Ke Ot as
t — —oo.

(i) The function @x,t) is increasing int and (x,t) — 1as t— oo uniformly in
X.

(i) Foranyte R, u(x,t) — 1as x— +oo, and there exists a real®) such that
Ux(X(t),t) =0, ux(x,t) < 0if x < X(t), and y(x,t) > 0if x > x(t); furthermore,
ifc=c, thenXt) =x= h/—gh and for any te R, u(-,t) is symmetric with
respect to .

(iv) u(x(t),t) =min u(-,t) ~ Kef' @t as t - —co,

(v) Ast— —oo, we havelf B > c/, then Bt +-,t) — Luniformly in any interval
| =00, Al; u(Ct+-,t) — @ (—-+h") uniformly in any] — o, AJ. If —-c< B </,
then Bt +-,t) — O uniformly in any compact subset &f u(—ct+-,t) —
@ (- + h) uniformly in any[A, 4. And if B < —c, then ypt+-,t) — 1
uniformly in any[A, +oo[. All these limits also hold in the space%cc

The functions g v k (X,t) depend continuously on

(c,d,h,H K) € (c*,4+0)% x R? x R,
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in the sense off. Furthermore, they are increasing in(or in i, or in K) and
converge td as h— +oo (or as H — +o, or as K— +) in 7 and also uniformly
for (x,t) € R x [A,+oo] for any real A.

Remarkl.2. Properties (iv) and (v) imply, in particular, that
ul?—é uz if (C17d17hlahél_7Kl) 7é (C27C/27h27h/27K2)-

THEOREM 1.3 For any ¢ > c¢* and hh € R, there exists an entire solution
V(X,t) = Ve niv (X, 1) of (1.1) such that for anyx,t) € R?

max (@ (—x+c't+h'), @c(x+ct+h))
< V(xt)
<min (1, @ (—X+Ct+h) 4+ Ao,
Ac,e?\c/(—x+c’t+h’) +(Pc(X+Ct+h))

andminv(-,t) = O(err + 10ty — g(ef'(Ot) as t— —oo. Furthermore, assertions
(i), (iii), and(v) in Theorem.1, as well as the monotonicity in h and the limits
h — 4o (respectively, h— +o), and the continuity inc,c’,h,h’), are true for
Voo hh asfor e npw k.

If h — —oo (respectively, h— —o), then ¥ ¢ v (Xt) — @ (—x+ct+h) (re-
spectively@(x+ ct+ h)) in 7 and uniformly for(x,t) €] — oo, AJ? (respectively,
(X,1) € [A,+oo[x] — o0, A]) for any real A.

Furthermore, with the notation of Theorel, if (c,c’,h,h,K) € (c*, )2
xR2x R%, then e nivk > Ve h and e nh k — Vo np as K— 01 in T and
also uniformly for(x,t) € Rx]| — o, A] for any real A.

(1.4)

THEOREM 1.4 Foranyc > c*, i € R, and K> 0, there exists a solutionwx,t) =
Wy vk (X,1) of (1.1)such that

(i) Forany(x,t) € R?
max (@ (—x+c't+h"),&(t))
(1.5) <wW(xt)
<min (1, g (—x+ct+ 1) +Ke" O Ayehe () 47 (1))
where0 < &(t) < 1is a solution of/(t) = f(§), t € R, and&(t) ~ Ke"' Ot as

t— —oo,

(i) Assertion(ii) in Theoreml.1is true for w .

(i) For any te R the function x— w~(x,t) is decreasing in X, W(—oo,t) =1,
and w (4-oo,t) = infw(-,t) = &(t).

(iv) Ast— —oo, we have If B > ¢/, then w (Bt + -,t) — 1 uniformly in any
interval] — oo, Al; W (C't+-,t) — @ (— - +h’) uniformly in any] — «, AJ; and
if B <c/, then UBt+-,t) — O uniformly in any[A,+[. These limits also
hold in the spaces§..
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The functions w,, , depend continuously oft’,h’,K) € (c*,+0) x R x R%
in the sense off . They satisfy the same monotonicity properties with respect to
h and K as the functionsg n v k in Theoreml.1and converge td as H — 4o
(respectively, K— +c0).

Furthermore, W 1, « (X,t) — @ (—x+c't+h') as K— 0" in 7 and uniformly
for (x,t) € Rx]— oo,A]' forany A. Lastly, if 6> c* is fixed, then w, , (x,t) — &(t)
as H — —oo in 7 and uniformly for(x,t) € [A, +oo[x] — o, A] for éhy real A.

Forany c>c* and he R, we have b hi k > Wy iy @nd e nivk — Wy 1y«
as h— —o in T and also uniformly fox,t) €] — oo,A] % K for any real A and any
compact K.

COROLLARY 1.5 For any c> c*, he R, and K> 0 the function vyan(x,t) =
W, (—X;t) is an entire solution of1.1). Itis increasing in X, W (+,t) =1, and
wt(—oo.t) = §(t) is a positive solution o’ = f(§). Furthermore, the functions
W,k €an also be viewed as the limits of the functiogs piv k as H — — for
any fixed €> c*.

Let My, (respectivelyM,, M+, andM,,-) be the 5- (respectively, 4-, 3-, and
3-) dimensional manifold of the functiong ¢ h v k (respectivelyve ¢ hpv, Wy by o
wahK). From Theorems 1.1, 1.3, and 1.4 and Corollary 1.5, we seévih& on
the boundary oM, by taking the limitKk — 0" and that botiM,,- andM,,+ are
also on the boundary &fl, by taking the limitsh — —co or ¥ — —co. Furthermore,
the two 2-dimensional manifolds of solutions of traveling-wave tgpe-x+c't +
H) andg.(x+ ct + h) are, respectively, on the boundaryMf,- andM,,+. Hence,
the traveling waves are also boundary points of the manif@d For instance,
any waveg (—x+c't +H) can be obtained from thg ¢ n v k by taking the limits
K — 0t andh — — in any order. Similarly, the 1-dimensional manifold of the
solutionsu(t) of U’ = f(u) is also on the boundary afl,, M,,-, andM,,+. For
instance, these solutions can be obtained fromuthen v k by taking the limits
h— —c andh’ — —c in any order.

These theorems are proved by solving sequences of Cauchy problems starting
at times—n with suitable initial conditions. Some a priori estimates, based on
the maximum principle and on comparisons with some solutions of the linear heat
equation, allow us to pass to the limit and get nontrivial solutions of (1.1).

2 Construction of a 5-Dimensional Manifold of Solutions:
Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We build a 5-dimen-
sional manifold of entire solutions of (1.1) that are different from the solutions
depending only ort and from the traveling-wave solutions. Roughly speaking,
these solutions behave asymptotically as —oo like two traveling waves for large
IX|: one coming from the left and the other one coming from the right. Between
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these two traveling waves, the solutions are nearly uniform and equal to a positive
functiong(t) solution ofg’ = ().

The proof of Theorem 1.1 is divided into several steps and lemmas. In a few
words, in order to get entire solutions of (1.1) fulfilling (i) through (v), the idea is
to consider a countable number of functiapéx,t) solutions of Cauchy problems
starting at times—n with suitable initial conditions. One of the key points will
consist in getting lower and upper bounds uniforrminThese bounds are then
sufficient to pass to the limit — o, and the properties fulfilled by the functions
will hold good for the limit functionu.

2.1 Approximating Cauchy Problems

Let c andc’ be greater than*, leth andh’ be two given real numbers, and let
K be a given positive real number. Lag be an integer such thte (@m0 < 1.
For anyn > ng, letun(X,t) = Unco hiv k (X t) be the unique classical solution of the
Cauchy problem

(un)t = (Un)xx+ f(Un), XeR, t>—n,
Un(X, —N) = Un,0(X) := max(@ (—x—c/n+ 1), Ke O @ (x—cn+h)).

Uniform Derivative Estimates

The above Cauchy problem is well-posed, and by the strong maximum prin-
ciple, we get that < up(x,t) < 1 for anyn > ng, t > —n, andx € R. Since the
functionsu, are uniformly bounded, since the equati@f); = (Un)xx+ f(Un) is
invariant by translation ix and sincef is of classC?, the standard estimates for
derivatives (see Friedman [12]) yield the existence of a con§lahtat does not
depend omor on(c,c’,h,i,K) such that, foralhe N,t > —n+1,xe R,

(2.1)  [(un)x (B, [(Un)e (D)5 | (Un)xx(X )], [(Un)ee (6,1, [ (Un)so(X, 1) < C-

Lower Bound for uj

By the maximum principle for parabolic equations, it follows that for any
—nand anyx € R,

(2.2) 0 < max (@ (—x+ct+h),&n(t), g(x+ct+h)) <un(xt) <1

where the functior,(t) is the solution of the Cauchy problegj(t) = f(&n),
&n(—n) =Ke "On Sincef > 0in (0,1) and f(1) = 0, we have, for any large
enough and for any> —n: 0 < Ke "'O" < £(t) < 1. Hence, there exists a con-
stantC > 0 such that§;,(t)| < C for anyn large enough ant> —n. The function

f being of clas€?, &, is twice differentiable, and we can assume t4tt)| < C.
By integration of the equation satisfied &y, we deduce that

&) ds (
/Kem)n@— n
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Sincef(s) < f/(0)sfor anyse (0,1), we get that

t > an(t) dS
n= /Ke—f'<0>n f’/(0)s

and therg,,(t) < Ke"'(©t, On the other handf. being of clas<? in a right neigh-
borhood of 0 and fulfillingf (s) < f’(0)s for anys > 0, it follows that f”(0) < 0.
Furthermore, there existg € (0, 1) and a continuous function: [0,&] — R such
thatv(0) = —f”(0)/2f'(0) and f(s) > f’(0)s(1 —v(g)s) > O for anye € [0, &g
and anys ¢ [0,¢] (for instance, choose(s) = —(1/2f'(0))inf g f"). Take any
€ €]0,&o], n > np, andt > —n. If §4(t) <&, it then follows that

t < E.n(t) dS
s /Ke—f/<o>n f/(0)s(1—v(g)s)

After a straightforward calculation, we find th&g(t) > Ke" ©t(1 —v(g)e). Fi-
nally, we conclude that

(2.3)  Vn>ng,t>-—n, e€c[0,g), min(s,Ke O(1—-v(e)e)) < En(t).

Monotonicity in t

The functionvy(x) = @ (—x— c'n+h’) satisfies

Vi + (V1) = @G (—x—cn+1) + f (@ (—x—cn+H))
=cd@,(—x—cn+h)>0

sincec’ > 0 andqy is increasing. Similarly, the functiom(x) = @(x—cn+h)
satisfies/ + f (v2) = c@f,(x—cn+h) > 0. Lastly, the constarte™ "' (9" is such that
f(Ke="'(On) > 0. Hence, the functionn o = sup(vy, Ke~ ' On v,) is a subsolution,
namely,u’,+ f(uno) > 0, 0 in the distribution sense. This implies that the
functionus(x,t) is increasing irt for anyt > —n, x € R.

Profile of up(-,t)

Both functionsg:(§) and@y (§) are increasing and approach 0 (respectively, 1)
as§ — —o (respectively,§{ — +). Furthermore, sef, = (Ac — A¢)N. Since
—c < A¢—A¢ < ¢, both —y, — cn+h andy, — cn+ h approach—o asn —
+00. Hence, by (1.2), it follows thay (—y, — &N+ h') ~ Agehe (-¥—cnthl)
AgeeN e AAn—(0n — o(ef'(OM) asn — 0, and, similarly,

@(yn—cn+h) =o(e" @M asn— o.
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Hence, fom large enough, there exist two regls< z, such that, < y, < z, and

@ (—x—cn+h), U o(x) <0, if X<yn,
@ (—yn—cn+h) =Ke "ON - if x=yp,

(24)  uno(x) =< Ke POy ((x) =0, if Yo < X< 2z,
Ke f'On = @ (z,—cn+h), if Xx=12,
@(x—cn+h), uo(x) >0, if Xx>z,.

Furthermore, sincéup)x is a solution of a linear Cauchy problem, it follows that,
foranyt > —n, (up)x(+,t) changes sign at most once (see, for instance, Nickel [22]).
By (2.2),un(+,t) = 1 whenceuy(+,t) cannot be monotone unless it is identically
1,; the latter is ruled out by the strong maximum principle. Hence, fortany-n,
there exists a reat,(t) such that(un)x(X,t) < 0 if X < Xa(t), (Un)x(X,t) =0 if
X = Xn(t), and(un)x(X,t) > 0 if X > xu(t).

Let us now write down the asymptotic behaviorygfandz, (this will be useful
in the sequel):

(2.5)

- _A A | Wy 1
{y” TR

Zn = Aen— 2 —h+0o(1)

The formula fory, comes directly from the fact thgt (—y, — cn+h) = Ke='On
and from the asymptotic behavior gf given by (1.2). The formula fog, is
similar.

If c=, itis clear thaun is symmetric with respect tdY — h)/2. This prop-
erty holds good fou,(-,t) at any timet > —n because equation (1.1) is invariant
by translation and reflection i This implies in particular that,(t) = (W —h)/2
for anyt > —n.

Upper Bound for uy

The estimates (2.2) and (2.3) provide a lower bound for the functignshich
do not depend on. The following lemma gives an upper bound for the

LEMMA 2.1 For any couplgx,t) € R?,

(2.6) imsup Un(x,t) < Qv (—x+Ct+h)+Ke" (O 4 A ghelxretth)
n>|t|, n—+oo0

(2.7) limsup un(x,t) < A (Xt | kel O L @ (x4 ct+h),
n>|t|, n—+oo

(2.8) limsup (Un(X,t) —&n(t)) < Agehe (XFHCHH) L A ghelxietih)
n>|[t|, n—+oo

PrRoOF. We will prove only (2.6) and (2.8), because the inequality (2.7) is sim-
ilar to (2.6). To prove these inequalities, say (2.6), the key point will be to compare
Un(X,t) — @ (—x+ 't +h’) with the solution of a linear heat equation for which we
have an explicit formula.
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Fix any couple(xo,to) € R?. Forn > [to|, let us consider the functiom(x,t) =
Un(X,t) — @ (—Xx+ct+h'). This function is nonnegative by (2.2). Singg(—x+
ct+h') is a solution of (1.1) and sincg(s) < f/(0) in [0, 1], we have that

(Vn)t = (Vn)xx+ f(Un) = f (@ (—x+ct+ 1)) < (V) + F'(O)vn

On the other hand, because of the definitiongcdndz,, we havev,(x,—n) =0
N ] —o,yn], Vn(x,—n) < Ke "O"in [yn,z,], andvi(x,—n) < @(x—cn-+h) in
[Zy, +oo[. Therefore

Vn(Xo,to) < 1+l

where

=1 O (
4T[(t0 + n)

1 f/
N=——" gf'Ottn </ @(y—cn+h)e to+n d )
4n(to+n) y- e y

Z, (9-y)?
CRE dy>

The first term | immediately satisfies< Ke"'(©%. Let us now emphasize the
second integral Il. With the change of varia@gle- s+ cn— h, we get

, (en-h—xg)2  p4o 242(cn—h—xg)s
Il 71 el (Ot ="rm) / @(s)e o) ds.
4n(to+n) z—cnth

By (2.5) and sincé < ¢, it follows thatz, —cn+h — —c asn — +o. Lete be
a positive number. Since> c*, (1.2) implies that there exists a realsuch that
@(S) < (Ac+e)eMs for anys < A. On the other handp,(s) < 1 for anys € R. For
n large enough, we then have

h—xg)2
I < 1 ef (0)(t0+n) (Cn(nT;g
- V/Ar(to+n
(2.9) (to+n)
A )\S 52+2cnhx0 +00 52+2cnhx0
X / (AC+€) c 4(n+tg) dS+/ 4(n+tg) dS
Za—cn+-h
We observe that
~+0o 52+2 cn—h—xg) +0o (cn—h—xg)s (cn—h—xg)A
/ e*WdK/ e T ds< ANl Gt 20
A A —cn—h—xg c

/ (en—h— XO)
asn — +oo and thae' 2~ _, 0 sincec > ¢* = 24/ 1/(0). Hence

’ o (cn—h—xo)2 +oo 52+2(cn—h—x0)s
lim #ef (O)(to+1)—"nr) / e 4y ds =0
N— 00 4T[(t0 + n) A
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On the other hand, sindg = Y V°22_4f/(0), itis true that

2
N S_sZJrZ(cn—h—xo)s__ S+ny/c2 —4f/(0) — 2tohc —h—Xo
¢ 4(n+to) - 2\/—n+t

n\/c2 4f7(0) — 2toA¢ —h— xo)

4(n+to)

With the change of variables= 2,/n+1y T — ny/c2 — 4f/(0) + 2toAc + h+ Xo, the
first term of the right-hand side in (2.9) becomes

cn— A s2+2(cn— s
L Oy / (Ac+e)d= T ds
4Tl (to—l—n) Zy—cnth
L iptejen e
= —(Ac.+¢ / e dt
VA an

where

(cn—h—xp)? N (ny/c? —41/(0) — 2toAc —h— xo)

an= f'(0)(tg+n) — 4n+1to) 4(n+to)

1 /
b — A+ n\/c2 4f/(0) — 2toA¢ —h— X
" 2\/n+t
Sincel. = ﬂ, it is straightforward to check that, — A¢(cto + Xo + h)

asn — +o. Furthermore, the asymptotic formula fay given in (2.5) implies
thatan ~ —2¢/N — —o0 asn — +oo; lastly, by — -+ asn — +o0. Eventually we
conclude that
limsupll < (Ac+ €)oot for anye > 0.
n— o0
Sincee > 0 was arbitrary, this yields that
limsup (Un(Xo, to) — @ (—Xo -+ C'tg + 1)) < Kef (O | A ghe(Clotxoth)
n—--o0
and completes the proof of (2.6).

To prove (2.8), we can similarly compare the functiapgx,t) — &n(t) to the
solution of the linear heat equation= vy« + f’(0)v with initial condition at time
—n: v(X,—Nn) = @v(—X—cn+H) if X <yn, v(x,—n) =0 if y, < X < z,, and
(X,—n) = @(Xx—cn+h) if x> z,. Itis then the case that

0< un(x,t —&n(t)
el (0)(t+n)

—~

AH\_/

411 +n
Yn = +eo (x-y)?
—y—cn+h)e 4<t+n>dy+ @(y—cn+h) e aidy).
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As was done in the previous paragraphs, the lmit +o gives the desired result.
O

2.2 Passage to the Limih— 4o

From the a priori derivative estimates (2.1) and by a diagonal extraction process,
there exists a subsequeneg ) such thauy(-,-) converges to a functiou(-,-) in
the sense of the topolody. From the equation satisfied loy, the limit function
u(x,t) is an entire and classical solution of (1.1). Furthermore, siniseof class
C?, the same kind of estimate as (2.1) holds goodifdhat is to say, there exists a
constantC, which does not depend dn,c’,h,i,K), such that

(2.10) V(x,t) GRZa Ux], |, [Uxx|, [Uet |, [Uxx] < C.

From the a priori estimates fd,(t), we can also assume that the functions
&w (1) converge to a functiog(t) in %c, solution ofg’ = (&) in R. By (2.3) and
since&,(t) < Kef' (Ot it follows that

(2.11) WteR,Vee[0,g], min(e,Ke' Ot(1—v(e)e)) <&(t) < KelOt,

In particular, for any > 0, there exists a re&) such thake™ (9t (1— ) < &(t) for
anyt < t. Finally, &(t) ~ Ke"' Ot ast — —oo.
The estimate (1.3) is a consequence of estimates (2.2), (2.6), (2.7), and (2.8).
Since the functionsy, are increasing im, it follows thatu is nondecreasing in
t. Sincef is of classC?, the strong maximum principle applied tpimplies that
eitheru; > 0 or iy = 0 in R2. The latter is impossible because (1.3) implies that
u(x,t) — 1 ast — +oo, uniformly in x, whereasi(x,t) — 0 ast — —oo locally in x.
This proves assertion (ii) in Theorem 1.1. Sincis increasing in, it also follows
that 0< u(x,t) < 1 for any(x,t) € R2,

Study of the Profile ofu(-,t)

Let us now prove assertion (iii) in Theorem 1.1: At any timehe function
u(-,t) is decreasing in some intenjat o, x(t)] and increasing ifx(t), +oo].

If c=c/, from the properties fulfilled byy, it follows that, for anyt € R, u(-,t)
is symmetric with respect ty = (W —h)/2. Furthermoreuy(x,t) < 0 if x < xg
anduy(x,t) > 0if x> Xo. For anyt € R, sinceu(x,t) < 1 andu(x,t) — 1 asx — +oo
by (1.3), there exist two sequenags— —o and, — +o such thauy(ap,,t) <0
andux(Bn,t) > 0. Finally, for anyt’ > t, ux(-,t’) can change sign at most once in
R, this change of sign occurring then at the poigtthat is to say, for any > t,
Ux(x,t') < 0if X < xp andux(x,t’) if x> xp. Sincet is arbitrary, this gives assertion
(iii) in Theorem 1.1 ifc= .

Let us now consider the general case wheaedc’ may be equal or not equal.
At any timet = —k, k € N, we know that, for any > k, there exists a reah(—Kk)
such thati (-, —K) is decreasing ifi— o, X,(—k)] and increasing ifkn(—k), +oo[. If
the sequencéx,(—k))n-k were not bounded, then, say, there exists a subsequence
n’ such thatxy(—k) — +o asn’ — +oo. In particular, for any; < xp, it follows
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thatuy (X1, —k) > uy (X2, —k) for n’ large enough. The limit' — +co would imply
that u(xg, —k) > u(xz, —K). Sincex; < xp are arbitrary, this means that-, —k)

is nonincreasing. Sinag +o, —k) = 1, we would get that(-, —k) = 1, which is
impossible because @ u < 1. Hence, the sequencg,(—K))n~k is bounded for
anyk € N.

By the diagonal extraction process, there exists then a subsegulence-c
such that, for ank € N, xy (—k) — x(—k) € R. For anyk € N and for anyx; <X, <
X(—k), we deduce thaty (X1, —K) > uy (X2, —K), whenceu(xi, —K) > u(x, —k).
The functionu(-, —K) is nonincreasing if— o, x(—k)], and similarly, it is nonde-
creasing inx(—Kk),+o[. Hence, for any timé > —k, the functionux(-,t) changes
sign at most once, and as above, we conclude that there exists a uniqué real
such thatuy(-,t) is negative in(—oo,x(t)) and positive in(x(t),+). Sincek € N
andt > —k are arbitrary, this gives the desired assertion (jii) of Theorem 1.1.

By (1.3), we haveu(x(t),t) = minu(-,t) > &(t). Furthermore, remember that
&(t) ~ Ke' (Ot ast — —co. On the other hand, for amy € R, there exists a redl
such that, forany <T,

@ (—X+Ct+h) < 2Agehe (X)) — ol (Ot) - a5t — —co,

uniformly in x € [~A, A] (sincehe€ = A2 + f’(0) > f'(0)). This also holds good
for @.(x+ ct+h). Finally, we deduce from the upper bound in (1.3) that

sup (u(-,t) - Kef'(o)‘) =o(e" O ast - —co.
[_A7A]

We conclude thai(x(t),t) ~ Ke' (Ot and even thaii(x,t) ~ Ke' (Ot uniformly in
any[—A A] ast — —oo.

Behavior of u(pt+-,t) ast— —o

Let us now emphasize part (v) of Theorem 1.1. First of all, by the lower bound
in (1.3), it is clear that, i3 > ¢/, thenu(Bt + x,t) — 1 ast — —oo uniformly in
any interval] — o0, A]. Furthermore, we have already seen that the lower bound in
(1.3) implies that linp, _u(0,t) = 0. In particular, lim_, _oinfxcru(Bt +x,t) =0
and the convergence of 3t +x,t) to 1 ast — —c cannot be uniform irx € R.
Similarly, if B < —c, thenu(pBt + x,t) — 1 ast — —co uniformly in any interval
[A, +oo].

Now, if —c < B < ¢/, then the lower bound in (1.3) immediately yields that
u(Bt+-,t) — 0 ast — —oco uniformly in any compact subset &. Notice that this
last convergence can only be locabibecausel(+o,t) = 1 for anyt € R.

Consider now the case whepe= ¢'. Lett, be any sequence converging-teo
and define the functions,(x) = u(c't, +x,t,). For anyx € R, (1.3) implies that

max(@ (—x+h),&(tn), @e(x+ (C+C)ta +h))
< Vn(X)
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<min <1, @ (—x+h)+ Ke Ot - A ghe((c+C)tn+xth) 7
A ) 4 ke O gy( ()t + X+ 1))

On the other hand, since the functions

Vn(X), V,,(X) = Ux(tn, C'th +X),
\/I'; (X) = U)()((tn7 C/tn + X) 5 \/I':/ (X) = uXxx(tn, C/tn + X) 5

are uniformly bounded im andx, there exists a functio(x) such that, up to
extraction of some subsequengg(x) — Y(x) in C2, asn — 0. Passing to the
limit t, — —oo in the above inequality fov,(x), we get that, for any € R,

@ (—x+h) < P(x) <min (1,(pd(—x+ h/)’Ac,e?\c’(*X+h’))
< @ (—x+h).

(2.12)

Hencey = @ (—-+h): This means that, up to extraction of some subsequence, the
functionsva(x) = u(C'th + X, tn) approachgy (—x+ h') ast, — —oo in C2. norms.
The limit does not depend on the sequetaoshence the convergence holds good
for the functionsx — u(c't + x,t) ast — —o. Furthermore, since 2 u(c't +
X,t) > @v(—x+h) for anyx € R and sincep(+) = 1, the functionx — u(c't +
x,t) converge tagy (—x+h') ast — —co uniformly in any interval] — w0, A]. The
convergence cannot occur uniformly e R because at any timig u(¢,t) — 1
whereaspy (—§&) — 0 as§ — +o.

Similarly, we would get that the functiong—ct + x,t) approach the function
@(x+h) ast — —oo in C2_ norms, and also uniformly in any intervi, +oo|.

Continuity in (c,c’,h,h"/K)
Consider a sequence
(Ck, G, i, i, Ki) — (€,¢,h, b K) € (¢, 400)2 x R? x (0, +0).

Setug(x,t) = uck’dwhk’h;(’Kk(x,t) andu(x,t) = Uce hiv k (X t). Call€(t) the function
solution of§,(t) = f(&k) in R and appearing in the bounds (1.3) for the function
Uk.

From the a priori estimates (2.10) for the functiepéx,t), there exists a func-
tion d(x,t) such thauy — G ask — +oo (up to extraction of some subsequence) in
the sense of". In particular, the functiom is an entire solution of (1.1). Since the
functions&y are uniformly bounded i€?(R), we can assume that they converge
in CL.(R) to a functiong(t) solution of¢’ = f(&) in R. Furthermore, (2.11) holds
good for& as well as for§x (remember that the real appearing in (2.11) only
depends orf). As a consequencé(t) ~ Kef' (Ot ast — —oo.

Furthermore, the functiong;(z) are continuous with respect toc [c*, +oo[
in the normsC2_(R). Indeed, ifq — ¢ € [c*, +oo], then by the standard elliptic

loc
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estimates and by an diagonal extraction process, there exists a subsdaacke
that@, — @in C2.(R), wheregis a solution of

¢ —cg +f(p=0 inR.

By passing to the limiy — ¢, the function@ is nondecreasing and, since the

functionsq, are normalized in 0, it follows thag(0) = % Sincef is positive on

(0,1), this yields thatp(—) = 0 and@(+«) = 1. Finally, 9= ¢ and the whole
sequencey, converges tap; in C2.(R).

The coefficients\; are continuous it € [c*, 4|, because of their definition.
Lastly, we claim that

(2.13) c+— Acis continuous irc € (c*, +).

Assume this claim temporarily. By passage to the liknit- 4+ in (1.3), the
functionuix,t) fulfills the estimates

max (@ (—x+c't+h'), &(t), c(x+ct+h))
< d(x,t)

; _ / / f/(O)t c(x+ct+h)
(2.14) gmm(l,cpd( x+ct+h)+Kel O+ A ,

Ade)\c/(forC’tJrh')+Kef’(0)t+(pc(x+ct+h),

Ade)\c,(—x+dt+h/) LE®) +Acezxc(x+ct+h)> ‘

Let us now prove that = u = Uc ¢ hiv k. Remember that the functiomg(x,t),
which are solutions of the Cauchy problefug): = (Un)xx+ f(un),t > —n, X € R,
with the initial conditions

Un<Xa _n) = Un,O<X) = max((pC'(_X_ C/n+ h/)v Ke_f,(O)n7(pC(X_ cn+ h)) )

converge to the function(x,t) in the sense of". Let us now compare the functions
G(-, —n) to the functionauno(-). Notice first that, from (2.12), for any > ¢* and
foranyz e R, @(2) < A€ By (2.14) and from the definition df/n, z,) in (2.4),
we get that

Ke™ FOn4 Aghelenth) if x <y,

\E(—n) B Ke,f/(())n| _i_Ac/e)\C/(foC’nJrh’)
_~_Ace)\c(xfcn+h) if xe [yn,an

Ke_f/(o)n +ACIe)\C/(—X—C/n+h,) if X Z Zn.

(2.15)  [d(%, ) ~Uno(x)] <

Fix a couple(xo,tp) € R2. Forn > |to|, as we did in the proof of Lemma 2.1,
we can compara = u, with a solution of the linear heat equatian= vy + f'(0)v,
which has as initial condition at timen the right-hand side of (2.15). We deduce
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that
|G(X0,t0) — Un(Xo,10)|
1 o
T /4n(to+n)

-y)?

y </.Yn <Ke_f/(o)n+Acei\c(y—cn+h)> eJ4<X(tJo_+">dy

+ Zﬂ(ﬁ( n) — Kef'(0 nHAde)\d (—y—c'n+h) )+ Al y_cmh)

Yn
(x0-y)?

X eﬁ 4(tg+n) dy

oo 2
+/+ Keﬁf JrAc,ekxc/ -y- c’n+h)>e 4to+y:1 dy)

Call 1, Il, and Ill the three terms in the right-hand side of this last inequality. Con-
sider the first integral | and write it I; + I, with obvious notation. With the
change of variableg= xo + 2,/to + ns it follows that

O<I1_%Te() /zm eSds—0 asn— +o,

sincey, ~ —Agn by (2.5). With the same change of variables and skfce A.c+
f’(0) = 0, we get that

Yn—Xo
0< Ip< Ac el f () =Acc)n+1'(O)to+e(xo-+h) / 2/oin ~S+2he/loFNsyg
VA 1

00

< Ac g+ (O)to+Ae(xo+h) ghen™

VAL 2)\C\/ to+n
Similarly, we have Ill— 0 asn — +o.

Lastly, the integral Il can be divided into three termsg I, and I with obvi-
ous notation. First of all, & Il; < " Ot |g(—_n) —Ke 7N — 0 asn — 4w
sinceg(t) ~ Ke"' (Ot ast — —oo, Let us now deal with term 41 With the successive
change of variableg= xo + 2,/ + nsands = 1+ A¢y/fo + n, we get that

—0 asn— +oo.

n—x
0<llz= ief)\gn+f’(0)to+)\c(><o+h) 2\/ig+n e—sz+2)\c\/to+nsds

\/ﬁ Yn—Xo
2,/to+n
b
_ A o (Oto+Ac(xo+h) +A2to / e Tt
VT a

wherea, = 2\/tT —Aevto+n andb, = 2\/toT — Ao+ n. Sincey, ~ —A¢n
andz, ~ A¢h, we deduce tha,, b, — —o0 and that I — 0 asn — +oco0. Similarly,
I, — 0 asn — +oo.
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Eventually,|G(Xo,to) — un(Xo,to)| — 0 asn — +oco. Sinceun(Xo,to) — U(Xo,to)
and (xo,tp) € R? is arbitrary, we get than = u. The limit function being unique,
the whole sequendelc) converges ta.

PROOF OF(2.13): Notice first that by (1.2), for any> c*, the functiong. =
@(- — '52) is the only solution of.” — o + f (@) =0, @(—) =0, @(+e) =1
fulfilling @.(&) ~ €% asf — —w.

Fix a realco > c*. In order to prove that thé are continuous irt at co, it
is enough to prove that th@,(0) are continuous it atco. Indeed, suppose that
@, (0) — @, (0) for a sequence, — Cp. Assume tha#, /4 Ac, and that, without
loss of generality, there exist a real> 0 and a subsequencg — Cg such that

Ac, <Ag—¢ Then

0o () ()

since theyp, are increasing. On the other hand, we have

rII

and
@, <_ In(A;\Cz —£)> S <_ In(A;OCO— s))

since we have proved that the functiam$) are continuous i€2,. with respect to
c. We deduce that

() 2)

This is impossible becausg®, is increasing.

Let I'(x) be a given smooth function such tHax) = 1 if x < 0 andl"(x) =0
if x> 1. Let us definevs(x) = @(X) — €' (x) and prove thatv.(0) is continuous
in ¢ at the pointcy. The functionsw, satisfy

F (e, We) 1= W — oW, + (€T (x) + we(x)) — F/(0)€"T (%)
+ (F"(X) + (2hc — C)r,(x))e)\cx

Let UC be the set of uniformly continuous and bounded function®ohetr > 0
andX = {weUC: (14 e "«2)¥)we UC} embedded with the norffw|| = ||(1+
e (M 9X)w||. LetL be the operator defined by

Lv=V'—coV + f' (@, )V

on its domairD(L) = {ve XN npzlvwﬁgp(na) V' € X}, embedded with the norm
IW|[p(L) = [[w|| +[|Lw]|. From proposition 5.5 in the paper by Mallordy and Roque-
joffre [19], it is the case thdt is an isomorphism for = ro small enough.
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On the other hand, it is straightforward to check that the funcii¢aw) is
of classC! on (cy — 8,¢o + &) x D(L) for somed > 0 small enough and that
owF (Co,wWg,) = L. The implicit function theorem implies that. is in D(L) and
is continuous with respect m(and even of clas8?) in the spac®(L) in a neigh-
borhood of the pointp. In particular,w;(0) is continuous inc. This gives the
desired result.

We are grateful to J.-M. Roquejoffre for the proof of (2.13). O

Monotonicity with Respect toh, h’, and K

Since the functiong, and@. are increasing, it follows that the functiongg
are nondecreasing m(respectivelyh’)—the other parameters being fixed. Hence,
the functionaun(x,t), and then the functiong ¢ h k (X,t), are nondecreasing
(respectivelyh’). They are even increasing m(respectivelylY) from the strong
maximum principle. Similarly, the functiong ¢ v  (X,t) are increasing it.

Notice that we cannot hope for any monotonicitycior ¢’ because the trav-
eling waveq is neither decreasing or increasinganThis can be seen from the
asymptotic behavior of thg. at +-co.

Let us now prove the convergencewgt n v k to the function 1 a8 — 4o, the
parameters, ¢/, ', andK being fixed. Sincep(+e) = @ (+w) =1, it is clear
from the lower bound in (1.3) that

inf u(x,t) =1 ash— 4o foranyAecR.
(Xt)ERX [A,A-00]
Furthermore, from the estimates (2.10) for the derivatives, this convergence also
takes place in the sense®t Similarly, the functionsic ¢ hv k (-, -) approach 1 as
h — 4o,

Finally, letc, ¢, h, andh’ be fixed and let a sequen&g — +o. Setuk, =
Uco vk, FOr anyn and for any(x,t) € R?, we know thatug,(x,t) > &k, (t),
where 0< &, (t) < 1 is a solution o€} = f(&k,) in R. Furthermore, there exists
arealeg € (0,1), which depends only on the functidrsuch that for ang € [0, &g
and anyt € R,

Ek. (1) > min(e,Kne" @t (1—v(g)e)) where 1-v(g)e > 0.

On the other hand, sindg(t), &, (t), and& (t) are uniformly bounded ihand
Kn, up to extraction of some subsequence, we can assumé&ligtconverges in
L (R) to a function 0< &(t) < 1 solution of¢’ = f(&) in R. By taking the limit
in the above lower bound fd, (t) applied tog = €, it follows that§(t) > e, >0
for anyt € R. Since 0< &(t) <1 for anyt and f > 0 in (0,1), the functiong
is nondecreasing ifR and then converges to a limit &s— —co. This limit is
a zero off and is bigger thamy > 0. Hence,§(—») = 1 and ther§(t) =1 in
R. Eventually, this implies thatk,(x,t) approaches the constant 1 locallytis-
and then uniformly in any interval\, +co[ by monotonicity—and uniformly irx.
Because this limit is independenti§f, the functionsic ¢ n v k (X,t) converge to 1,
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uniformly int € [A, 4] and uniformly inx, asK — +co. As in the case mentioned
above, this convergence is also true in the sensg. of

3 Construction of the 4-Dimensional ManifoldM,:
Proof of Theorem 1.3

In this section, our aim is to construct a 4-dimensional manifold of entire solu-
tions of (1.1) and to prove that this new manifold of solutions is on the boundary of
the 5-dimensional manifoldl, given in Section 2. Roughly speaking, this will be
done by considering the limK — O for the solutionsic ¢ hv x given in Theorem
1.1.

The construction of the functiong ¢ ny defined in Theorem 1.3 proceeds al-
most exactly the same way as that of the functiongn v k in Theorem 1.1. For
anyn e N, letvy(X,t) = Vac o hiv (X, t) be the solution of the Cauchy problem

(Vo)t = (Vn)xx+ f(Vn), XeR,t>—n,
Vn(X, —N) = Vno(X) := max(@y (—x—c'n+h'), g(x—cn+h)).

We observe that there exists a igasuch thatn o(X) = @ (—x—c'n+h), v, o(X) <
0 if X < Xn, Vno(Xn) = @ (—%n — N+ h") = @(Xn — cn+h), andvpo(X) = @(X—
cn+h), Vpo(X) > 0 if X > X, Furthermorevyo(X,) — 0 asn — +o.  Since
Vno(Xn) = @ (=X —c'n+h") = (X, —cn+h), it is easy to check that

Xn = (A¢—A¢)N+B+0(1) asn— +o,
INAc —INAc+Agh —Ach

B:
)\c+)\c’

The lower bounds (2.2) work for, with &, = 0. Furthermore, sincg, < xp < z,
for n large enough, wherg, and z, satisfy (2.5), we deduce from the proof of
Lemma 2.1 that the upper estimates (2.6) and (2.7) work for the functiomgh
K=0.

Up to extraction of some subsequence, the functigiis,t) converge in the
sense of7 to a functionv(x,t), satisfying (1.4) and increasing in Assertions
(i) and (v) in Theorem 1.1 work fow. ¢ n(X,t) exactly the same way as for
Uce hiv k(X t). The monotonicity inh andh’ as well as the convergence to 1 as
h — + (respectivelyf — +) are also true.

The only change deals with the minimum pox(t) of the functionv(-,t) and
with the value ofv(x(t),t). If c=c/, the minimum pointx(t) of v(-,t) is still

constant and equal t¢ = h/—gh From the upper bound in (1.4), we get that

/ / /
(pc<ct+ hzh > < V(xo,t) < cpc<ct+ hzh > AN
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By (1.2) and sincé\cc = A2+ {/(0), it follows that
A" < liminf (e - O miny(., 1))

h+h/

< limsup(e"®+ O miny(.,t)) < 2Ace"2

t——o0

This gives the required result in assertion (iv) of Theorem 1.3.

If c#£c, thanks to (1.4), it is easy to see thdt) ~ (A¢ — Ac)t ast — —oo. In
particular, ifc > ¢/, thenA. < Ay, whencex(t) — —o ast — —o, and the converse
is true ifc < /. Furthermore, botliA¢ — A¢)t + ct and—(A¢ — A¢)t +C't approach
—oo0 ast — —oo. By using the lower and upper bounds in (1.4) and the asymptotic
behavior of@. and @ in (1.2), a straightforward calculation yields that, for any
€>0,

V(A = Aot +B,t) <V(A¢ —Ac)t+B— 12 —¢.t)
{v(()\d — At +B,t) <V((Ag —A)t+B+ '”f +&,1)
for —t large enough. Hence,
In2 . In2
B— X < liminf (X(t) — (A¢ — A¢)t) < limsup (X(t) — (A¢ —Ac)t) < B+ —.

t——c0 t——o0 )\C

c/
By using again (1.4) and the above inequalities, it then follows that

C <liminf (e — (Ao + POty (1), ))<I|msup(e (Ao + POty (x(1),1)) < 3C

e .2 (h+h')
+ +
whereC = Ac"" Ay e

Continuity in (¢, ¢/, h, h')

As we did for the functionsl, let a sequencécy, ¢, hi, hy) converge ta(c, ¢,
h,h) € (c*,+)? x R? and setk = Vg, ¢ ny @NdV = Ve np. Up to extraction
of some subsequence, the functiep@pproach a solution 6f (1.1) that satisfies
(1.4). Hence, we can easily compare the functigixs—n) to the functions/, o(x)
on both sides of the point,. Arguing as in the proof of the continuity of the
functionsu in Section 2, we deduce th&l(xo,to) — Va(Xo,t0)| — 0 asn — +oo.
Thereforey=v.

. This gives the desired result.

Limit K —0%in Uce hpk

Fix a quadruplgc,c’,h, i) € (c*,+)2 x R?. For anyK > 0 and anyn € N,
we see thatiho(X) >, # Vno(X) in R for n large enough. The limit — 4 yields
thatu(x,t) > v(x,t) in R%. On the other hand, mix(-,t) and minv(-,t) have two
different asymptotic behaviors &s— —oo by assertions (iv) in Theorems 1.1 and
1.3. The strong maximum principle then implies that v in R?.

Furthermore, we have € uno(X) — Vno(x) < Ke~ @M in R. Hence, by com-
paring the functioru,(x,t) — va(X,t) to the solution of the linear heat equation
W = Wiy + f/(0)w with initial condition Ke=f'(O" at time —n, we get that 0<
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Un(X,t) —vn(x,t) < Kef' (Ot for any(x,t) € R? and for anyn > |t|. The limitn — +oo
gives that 0< u(x,t) — v(x,t) < Ke"' (Ot Thereforeu(x,t) — v(x,t) asK — 0F
uniformly in Rx] — e, A for any A € R. Lastly, for any sequendé, — 0", the
functionsuc ¢ n v k, satisfy the a priori estimates (2.10) (which do not depend on
Kn). Up to extraction of some subsequence, they converge in the seAS¢ocd
solution of (1.1), which turns out to be The limit does not depend on the se-
quenceK,, whence all the functions, ¢ vnx converge inZ to the functionve ¢ n v

asK — 0t.

Limits h,h — —oo

Let us finally prove that, sayc ¢ ny(X,t) — @ (—X+Cc't+h') ash— —co. Let
hn — —o0. Since the estimates (2.10) do not depent,dhe functions/c ¢ ny, v (X, t)
converge, up to extraction of some subsequence, in the senge wf a func-
tion Y(x,t), solution of Y = Yux+ f(P). By (1.4), it also follows that, for any
(x,t) € R?

@ (—x+ct+h") <P(x,t) <min(1, @ (c't —x+h)).

Eventually,(x,t) = @ (—x+ct + ) for any (x,t) € R?. As usual, we can also
add that the convergencegfe n v (X,t) to @ (—x+Cc't+ ) is true ahh — —oo (and

not only for some sequence). Furthermore, from (1.4), this convergence occurs
uniformly in (x,t) €] — o, AJ? for any realA.

4 Two 3-Dimensional Manifolds of Solutions Monotone irx:
Proof of Theorem 1.4

This section is devoted to the proof of Theorem 1.4. It deals with the construc-
tion of two 3-dimensional manifolds of solutions of (1.1) that are monotone in
unlike the solutionsl andv given in Theorems 1.1 and 1.3. These new solutions
can also be viewed as boundary points of the 5-dimensional mafifgld

The proof of Theorem 1.4 is very similar to those of Theorems 1.1 and 1.3. We
only outline it. Consider the functiong, (x,t) solutions of the Cauchy problems

(Wn )t = (W )t F (W)
Wy (X, =) = W o(X) := max(g (—x—cn+h),Ke "On).

These functions converge as- + to a functionw™ (x,t) = w , (X, t) fulfilling
all the requirements of Theorem 1.4.
The only fact that we point out is the convergenceQf hr k toWy 1, « ash —
—oo for any fixedc > ¢*. Indeed, consider a sequertge— —o. Up to extraction
of some subsequence, by (2.10) and (1.3), the functipasuc ¢ h vk Converge in
the sense of to a functionw™ solution of (1.1) and fulfilling (1.5). By estimating
the difference betweew 1—n,-) andw, o(-), we get that limsup , ., [W~ (x,t) —
W, (x,t)] = 0 (with the same arguments as in the proof of the continuity of the
functionsuc ¢ hiv x in Theorem 1.1). This implies that "= w".
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Lastly, the convergences of, ,  to &(t) ash’ — —c and toqy (—x+c't +H)
askK — 0" come directly from (1.5).
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